Строение проводящей системы сердца. Узлы и пучки проводящей системы сердца


Когда-то были описаны удивительные клетки, их обнаружил крупнейший чешский физиолог и естествоиспытатель Ян Пуркинье (рис. 1), впоследствии они получили его имя. Клетки Пуркинье при изучении под микроскопом имеют в своем составе актиновые и миозиновые нити, что делает их сходными с миоцитами, но нити эти не лежат одна над другой и неспособны к упорядоченному взаимодействию, как в кардиомиоцитах. К тому же их мало, и куда больше цитоплазмы, перенасыщенной ионами кальция. Высокая концентрация кальция и некоторые другие электролитные характеристики наделяют эти необычные клетки способностью самостоятельно создавать электрические сигналы, что роднит их с нейронами. Благодаря чему, в сердце существует весьма представительная группа клеток, способных к периодическому самопроизвольному возбуждению.

Рис.1. Ян Пуркинье


Клетки Пуркинье структурно расположены по всему миокарду. Существует три скопления этих клеток (рис. 2). Первое - синоатриальный узел (1), связано с мышечной системой левого и правого предсердий , это скопление клеток Пуркинье находится под эпикардом. Второе скопление - атриовентрикулярный узел (2) находится в стенке правого предсердия, в той части, где проходит граница между правым предсердием и правым желудочком. Третье - пучок Гиса , оно имеет вытянутую форму (3), и находится в межжелудочковой перегородке, начинается пучок от второго скопления - атриовентрикулярного узла, затем оно расходится на две части (ножки пучка Гиса ), которые (4) образуют ветвящуюся сеть в левом и правом желудочке , это ветвление носит название волокон Пуркинье (5).


Рис.2. Строение проводящей системы сердца


Наибольшим значением обладает синоатриальный узел, его также называют «водителем ритма». Но все чаще можно услышать другое его обозначение, пришедшее из английского языка: пейсмекер, то есть «тот, кто задает темп». Так вот, клетки пейсмекера создают импульсы частота которых колеблется в пределах 60-80 в минуту, за счёт этого они и «задают темп» всему сердцу, подобная частота соответствует пульсу здорового человека. Импульс создает возбуждение, которое охватывает предсердия, данные полости синхронно сокращаются. Дальше возбуждение доходит до второго скопления клеток Пуркинье - атриовентрикулярного узла, передается на пучок Гиса, затем на его ножки, и разбегается за счет волокон Пуркинье по миокарду желудочков. В ответ на импульс, желудочки синхронно сокращаются. Как выяснилось, в случае выпадения в силу каких-либо причин синоатриального узла из работы, роль пейсмекера берет на себя следующее звено проводящей системы - атриовентрикулярный узел, правда, он способен к созданию импульсов с частотой 40-50 в мин. Если поражается и он, то пучок Гиса берет в свои руки «командование парадом», хотя его возможности ограничиваются в среднем 30 импульсами в минуту. Наконец, последним звеном, способным, задыхаясь, управлять слабеющим сердцем, оказываются сами волокна Пуркинье, возбуждающиеся около 20 раз в минуту.

Знание проводящей системы сердца необходимо для освоения ЭКГ и понимания сердечных аритмий .

Сердце обладает автоматизмом - способностью самостоятельно сокращаться через определенные промежутки времени. Это становится возможным благодаря возникновению электрических импульсов в самом сердце. Оно продолжает биться при перерезке всех нервов, которые к нему подходят.

Импульсы возникают и проводятся по сердцу с помощью так называемой проводящей системы сердца . Рассмотрим компоненты проводящей системы сердца:

  • синусно-предсердный узел,
  • предсердно-желудочковый узел,
  • пучок Гиса с его левой и правой ножкой,
  • волокна Пуркинье.

Схема проводящей системы сердца .

Теперь подробнее.

1) синусно-предсердный узел (= синусовый, синоатриальный, SA ; от лат. atrium - предсердие) - источник возникновения электрических импульсов в норме. Именно здесь импульсы возникают и отсюда распространяются по сердцу (рисунок с анимацией внизу). Cинусно-предсердный узел расположен в верхней части правого предсердия, между местом впадения верхней и нижней полой вены. Слово «синус» в переводе означает «пазуха», «полость».

Фраза «ритм синусовый » в расшифровке ЭКГ означает, что импульсы генерируются в правильном месте - синусно-предсердном узле. Нормальная частота ритма в покое - от 60 до 80 ударов в минуту. Частота сердечных сокращений (ЧСС) ниже 60 в минуту называется брадикардией , а выше 90 - тахикардия . У тренированных людей обычно наблюдается брадикардия.

Интересно знать, что в норме импульсы генерируются не с идеальной точностью. Существует дыхательная синусовая аритмия (ритм называется неправильным, если временной интервал между отдельными сокращениями на? 10% превышает среднее значение). При дыхательной аритмии ЧСС на вдохе увеличивается , а на выдохе уменьшается, что связано с изменением тонуса блуждающего нерва и изменением кровенаполнения отделов сердца при повышении и понижении давления в грудной клетке. Как правило, дыхательная синусовая аритмия сочетается с синусовой брадикардией и исчезает при задержке дыхания и увеличении ЧСС. Дыхательная синусовая аритмия бывает преимущественно у здоровых людей , особенно молодых. Появление такой аритмии у лиц, выздоравливающих после инфаркта миокарда, миокардита и др., является благоприятным признаком и указывает на улучшение функционального состояния миокарда.

2) предсердно-желудочковый узел (атриовентрикулярный, AV ; от лат. ventriculus - желудочек) является, можно сказать, «фильтром» для импульсов из предсердий. Он расположен возле самой перегородки между предсердиями и желудочками. В AV-узле самая низкая скорость распространения электрических импульсов во всей проводящей системе сердца. Она равна примерно 10 см/с (для сравнения: в предсердиях и пучке Гиса импульс распространяется со скоростью 1 м/с, по ножкам пучка Гиса и всем нижележащим отделам вплоть до миокарда желудочков - 3-5 м/с). Задержка импульса в AV-узле составляет около 0.08 с, она необходима, чтобы предсердия успели сократиться раньше и перекачать кровь в желудочки.

Почему я назвал AV-узел «фильтром »? Есть аритмии, при которых нарушается формирование и распространение импульсов в предсердиях. Например, при мерцательной аритмии (= фибрилляция предсердий) волны возбуждения беспорядочно циркулируют по предсердиям, но AV-узел блокирует большинство импульсов, не давая желудочкам сокращаться слишком часто. С помощью различных препаратов можно регулировать ЧСС , повышая проводимость в AV-узле (адреналин, атропин) или снижая ее (дигоксин, верапамил, бета-блокаторы). Постоянная мерцательная аритмия бывает тахисистолической (ЧСС > 90), нормосистолической (ЧСС от 60 до 90) или брадисистолической формы (ЧСС > 6% больных старше 60 лет. Любопытно, что с фибрилляцией предсердий жить можно годами, а вот фибрилляция желудочков является смертельной аритмией (один из примеров описан ранее), при ней без экстренной медицинской помощи больной умирает за 6 минут.

Проводящая система сердца .

3) Пучок Гиса (= предсердно-желудочковый пучок) не имеет четкой границы с AV-узлом, проходит в межжелудочковой перегродке и имет длину 2 см, после чего делится на левую и правую ножки соответственно к левому и правому желудочку. Поскольку левый желудочек крупнее, то левой ножке приходится разделиться на две ветви - переднюю и заднюю .

Зачем это знать? Патологические процессы (некроз, воспаление) могут нарушать распространение импульса по ножкам и ветвям пучка Гиса, что видно на ЭКГ. В таких случаях в заключении ЭКГ пишут, например, «полная блокада левой ножки пучка Гиса».

4) Волокна Пуркинье связывают конечные разветвления ножек и ветвей пучка Гиса с сократительным миокардом желудочков.

Способностью генерировать электрические импульсы (т.е. автоматизмом) обладает не только синусовый узел. Природа позаботилась о надежном резервировании этой функции. Синусовый узел является водителем ритма первого порядка и генерирует импульсы в частотой 60-80 в минуту. Если по какой-то причине синусовый узел выйдет из строя, станет активным AV-узел - водитель ритма 2-го порядка , генерирующий импульсы 40-60 раз в минуту. Водителем ритма третьего порядка являются ножки и ветви пучка Гиса, а также волокна Пуркинье. Автоматизм водителя ритма третьего порядка равен 15-40 импульсов в минуту. Водитель ритма также называют пейсмекером (pacemaker, от англ. pace - скорость, темп).

Проведение импульса в проводящей системе сердца (анимация).

В норме активен только водитель ритма первого порядка, остальные «спят» . Такое происходит, потому что электрический импульс приходит к другим автоматическим водителям ритма раньше, чем в них успевает сгенерироваться собственный. Если автоматические центры не повреждены, то нижележащий центр становится источником сокращений сердца только при патологическом повышении его автоматизма (например, при пароксизмальной желудочковой тахикардии в желудочках возникает патологический источник постоянной импульсации, которая заставляет миокард желудочков сокращаться в своем ритме с частотой 140-220 в минуту).

Наблюдать работу пейсмекера третьего порядка можно также при полном блокировании проведения импульсов в AV-узле, что называется полной поперечной блокадой (= AV-блокада III степени). При этом на ЭКГ видно, что предсердия сокращаются в своем ритме с частотой 60-80 в минуту (ритм SA-узла), а желудочки - в своем с частотой 20-40 в минуту.

Про основы ЭКГ будет отдельная статья.

  • Электрокардиограмма. Часть 1 из 3: теоретические основы ЭКГ
  • ЭКГ, часть 3a. Мерцательная аритмия и наджелудочковая пароксизмальная тахикардия

Сокращения сердечной мышцы вызываются электрическими импульсами, которые зарождаются и проводятся в специализированную и видоизмененную ткань сердца, названную проводниковой системой. В нормальном сердце импульсы возбуждения возникают в синусовом узле, проходят через предсердия и достигают атриовентрикулярного узла. Затем они проводятся в желудочки через пучок Гиса, его правую и левую ножку и сеть волокон Пуркинье, и достигают сократительных клеток миокарда желудочков.

ПРОВОДНИКОВАЯ СИСТЕМА

1. Синусовый узел (синоатриальный, S-A-узел Keith и Flack)

2. Передний межузловой путь с двумя разветвлениями:

2а - пучок к левому предсердию (пучок Bachmann)

2б - нисходящий пучок к межпредсердной перегородке и атриовентрикулярному узлу

3. Средний межузловой путь

4. Задний межузловой путь

5. Атриовентрикулярный (А-V) узел Ашоффа-Тавара

6. Пучок Гиса

7. Правая ножка пучка Гиса

8. Левая ножка пучка Гиса

9. Задняя ветвь левой ножки

10. Передняя ветвь левой ножки

11. Сеть волокон Пуркинье в желудочковой мускулатуре

12. Сеть волокон Пуркинье в предсердной мускулатуре

СИНУСОВЫЙ УЗЕЛ

Синусовый узел представляет собой пучок специфической сердечно-мышечной ткани, длина которого достигает 10-20 мм и ширина - 3-5 мм. Он расположен субэпикардиально в стенке правого предсердия, непосредственно сбоку от устья верхней полой вены. Клетки синусового узла расположены в нежной сети, состоящей из коллагеновой и эластической соединительной ткани. Существует два вида клеток синусового узла - водителя гритма или пейсмекерные (Р-клетки) и проводниковые (Т-клетки). Р-клетки генерируют электрические импульсы возбуждения, а Т-клетки выполняют преимущественно функцию проводников. Клетки Р связываются как между собой, так и с клетками Т. Последние, в свою очередь, анастомозируют друг с другом и связываются с клетками Пуркинье, расположенными около синусового узла.

В самом синусовом узле и рядом с ним находится множество нервных волокон симпатического и блуждающего нервов, а в субэпикардиальной жировой клетчатке над синусовым узлом расположены ганглии блуждающего нерва. Волокна к ним исходят в основном из правого блуждающего нерва.
Питание синусового узла осуществляется синоатриальной артерией. Это сравнительно крупный сосуд, который проходит через центр синусового узла и от него отходят мелкие ветви к ткани узла. В 60% случаев синоатриальная артерия отходит от правой венечной артерии, а в 40% - от левой.

Синусовый узел является нормальным электрическим водителем сердечного ритма. Через равные промежутки времени в нем возникают электрические потенциалы, возбуждающие миокард и вызывающие сокращение всего сердца. Клетки Р синусового узла генерируют электрические импульсы, которые проводятся клетками Т в близкорасположенные клетки Пуркинье. Последние, в свою очередь, активируют рабочий миокард правого предсердия. Кроме того, по специфическим путям электрический импульс проводится в левое предсердие и атриовентрикулярный узел.

МЕЖУЗЛОВЫЕ ПУТИ

Электрофизиологическими и анатомическими исследованиями в последнее десятилетие было доказано наличие трех специализированных проводниковых путей в предсердиях, связывающих синусовый с атриовентрикулярным узлом: передний, средний и задний межузловые пути (James, Takayasu, Merideth и Titus). Эти пути образованы клетками Пуркинье и клетками, очень похожими на клетки сократительного предсердного миокарда, нервными клетками и ганглиями блуждающего нерва (James).

Передний межузловой путь делится на две ветви - первая из них идет к левому предсердию и называется пучком Бахманна, а вторая спускается вниз и кпереди по межпредсердной перегородке и достигает верхней части атриовентрикулярного узла.

Средний межузловой путь , известный под названием пучок Венкебаха, начинается от синусового узла, проходит позади верхней полой вены, спускается вниз по задней части межпредсердной перегородки и, анастомозируя с волокнами переднего межузлового пути, достигает атриовентрикулярного узла.

Задний межузловой путь , названный пучком Тореля, отходит от синусового узла, идет вниз и кзади, проходит непосредственно над коронарным синусом и достигает задней части атриовентрикулярного узла. Пучок Тореля самый длинный из всех трех межузловых путей.

Все три межузловые пути анастомозируют между собой недалеко от верхней части атриовентрикулярного узла и связываются с ним. В некоторых случаях от анастомоза межузловых путей отходят волокна, которые обходят атриовентрикулярный узел и сразу достигают его нижней части, или же доходят до того места, где он переходит в начальную часть пучка Гиса.

АТРИОВЕНТРИКУЛЯРНЫЙ УЗЕЛ

Атриовентрикулярный узел находится справа от межпредсердной перегородки над местом прикрепления створки трехстворчатого клапана, непосредственно рядом с устьем коронарного синуса. Форма и размеры его разные: в среднем длина его достигает 5-6 мм, а ширина - 2-3 мм.

Подобно синусовому узлу, атриовентрикулярный узел содержит также два вида клеток - Р и Т. Однако имеются значительные анатомические различия между синоаурикулярным и атриовентрикулярным узлами. В атриовентрикулярном узле гораздо меньше Р-клеток и незначительное количество сети коллагеновой соединительной ткани. У него нет постоянной, центрально проходящей артерии. В жировой клетчатке за атриовентрикулярным узлом, вблизи устья коронарного синуса, находится большое число волокон и ганглиев блуждающего нерва. Кровоснабжение атриовентрикулярного узла происходит посредством ramus septi fibrosi, называемой еще артерией атриовентрикулярного узла. В 90% случаев она отходит от правой венечной артерии, а в 10% - от ramus circumflexus левой венечной артерии.

Клетки атриовентрикулярного узла связываются анастомозами и образуют сетчатую структуру. В нижней части узла, перед переходом в пучок Гиса, клетки его располагаются параллельно друг другу.

ПУЧОК ГИСА

Пучок Гиса, названный еще и атриовентрикулярным пучком, начинается непосредственно в нижней части атриовентрикулярного узла, и между ними нет ясной грани. Пучок Гиса проходит по правой части соединительнотканного кольца между предсердиями и желудочками, названного центральным фиброзным телом. Эта часть известна под названием начальной проксимальной или пенетрирующей части пучка Гиса. Затем пучок Гиса переходит в задне-нижний край мембранозной части межжелудочковой перегородки и доходит до ее мышечной части. Это так называемая мембранозная часть пучка Гиса. Пучок Гиса состоит из клеток Пуркинье, расположенных в виде параллельных рядов с незначительными анастомозами между ними, покрытых мембраной из коллагеновой ткани. Пучок Гиса расположен совсем рядом с задней некоронарной створкой аортального клапана. Длина его около 20 см. Питание пучка Гиса осуществляется артерией атриовентрикулярного узла.

Иногда от дистальной части пучка Гиса и начальной части левой ножки его отходят короткие волокна, идущие в мышечную часть межжелудочковой перегородки. Эти волокна называются параспецифическими фибрами Махайма.

До пучка Гиса доходят нервные волокна блуждающего нерва, но в нем нет ганглиев этого нерва.

ПРАВАЯ И ЛЕВАЯ НОЖКИ ПУЧКА ГИСА

Пучок Гиса в нижней части, названной бифуркацией, разделяется на две ножки - правую и левую, которые идут субэндокардиально или интракардиально по соответствующей стороне межжелудочковой перегородки. Правая ножка представляет собой длинный, тонкий, хорошо обособленный пучок, состоящий из множества волокон, имеющих незначительные проксимальные разветвления или без таковых. В дистальной части правая ножка пучка Гиса выходит из межжелудочковой перегородки и достигает передней сосочковой мышцы правого желудочка, где разветвляется и связывается анастомозами с волокнами сети Пуркинье.

Несмотря на усиленные морфологические изучения, проводимые в последние годы, структура левой ножки пучка Гиса остается невыясненной. Существуют две основные схемы строения левой ножки пучка Гиса. Согласно первой схеме (Rosenbaum и сотр.), левая ножка еще с самого начала делится на две ветви - переднюю и заднюю. Передняя ветвь - относительно более длинная и тонкая - достигает основания передней сосочковой мышцы и разветвляется в передне-верхней части левого желудочка. Задняя ветвь - относительно короткая и толстая - достигает основания задней сосочковой мышцы левого желудочка. Таким образом внутрижелудочковая проводниковая система представлена тремя проводящими путями, названными Rosenbaum и сотр. фасцикулами, - правой ножкой, передней ветвью и задней ветвью левой ножки пучка Гиса. Множество электрофизиологических исследований поддерживают мнение о трехпучковой (трифасцикулярной) внутрижелудочковой проводниковой системе.

По второй схеме (James и сотр.) считается, что в отличие от правой ножки, левая не представляет собой обособленного пучка. Левая ножка еще в самом начале, отходя от пучка Гиса, разделяется на множество варьирующих по числу и толщине волокон, которые веерообразно разветвляются субэндокардиально по левой стороне межжелудочковой перегородки. Два из множества разветвлений образуют более обособленные пучки - один, расположенный спереди, - в направлении передней, а другой сзади - в направлении задней сосочковой мышцы.

Как левая, так и правая ножка пучка Гиса, подобно межузловым путям предсердий, составлены из двух видов клеток - клеток Пуркинье и клеток, очень похожих на клетки сократительного миокарда.
Большая часть правой и передние две трети левой ножки кровоснабжаются септальными веточками левой передней нисходящей артерии. Задняя треть левой ножки питается септальными веточками задней нисходящей артерии. Существует множество транссептальных анастомозов между септальными веточками передней нисходящей венечной артерии и веточками задней нисходящей венечной артерии (James).
Волокна блуждающего нерва доходят до обеих ножек пучка Гиса, однако в проводниковых путях желудочков нет ганглиев этого нерва.

ВОЛОКНА СЕТИ ПУРКИНЬЕ

Конечные разветвления правой и левой ножек пучка Гиса связываются анастомозами с обширной сетью клеток Пуркинье, расположенных субэндокардиально в обоих желудочках. Клетки Пуркинье представляют собой видоизмененные клетки миокарда, которые непосредственно связываются с сократительным миокардом желудочков. Электрический импульс, поступающий по внутрижелудочковым проводящим путям, достигает клеток сети Пуркинье и отсюда переходит непосредственно к сократительным клеткам желудочков, вызывая сокращение миокарда.

Нервные волокна блуждающего нерва не доходят до сети волокон Пуркинье в желудочках.
Клетки сети волокон Пуркинье питаются кровью из капиллярной сети артерий соответствующего района миокарда.

Проводящая система сердца начинается синусовым узлом, который расположен в верхней части правого предсердия. Его длина 10-20 мм, ширина 3-5 мм. Именно в нем возникают импульсы, которые вызывают возбуждение и сокращение всего сердца. Нормальный автоматизм синусового узла составляет 50-80 импульсов в минуту. Синусовый узел является автоматическим центром I порядка.

Импульс, возникший в синусовом узле мгновенно распространяется по предсердиям, заставляя их сократиться. Но распространиться дальше и сразу же возбудить желудочки сердца эта волна не может, так как миокард предсердий и желудочков разделен фиброзной тканью, которая не пропускает электрические импульсы. И только в одном месте этой преграды не существует. Туда и устремляется волна возбуждения. Но именно в этом месте находится следующий узел проводящей системы, который называется атриовентрикулярным (длина около 5 мм, толщина - 2 мм). В нем происходит задержка волны возбуждения и фильтрация входящих импульсов.

Далее нижняя часть узла, утончаясь, переходит в пучок Гиса (длина 20 мм). В последующем пучок Гиса разделяется на две ножки - правую и левую. Правая ножка проходит по правой стороне межжелудочковой перегородки и разветвляясь ее волокна (волокна Пуркинье) пронзают миокард правого желудочка. Левая ножка проходит по левой половине межжелудочковой перегородки и делится на переднюю и заднюю ветви, которые снабжают волокнами Пуркинье миокард левого желудочка. После задержки в результате прохождения атриовентрикулярного узла волна возбуждения, распространяясь по ножкам пучка Гиса и волокнам Пуркинье, мгновенно охватывает всю толщу миокарда желудочков, вызывая их сокращение. Задержка импульса имеет огромное значение и не дает сократиться предсердиям и желудочкам одновременно - сперва сокращаются предсердия, и только вслед за этим - желудочки сердца.

В атриовентрикулярном узле, так же как и в синусовом узле, имеются два вида клеток - Р и Т. Атриовентрикулярный узел вместе с начальной частью пучка Гиса является автоматическим центром II порядка, который может самостоятельно вырабатывать импульсы с частотой 35-50 в минуту.

Конечная часть пучка Гиса, его ножки и волокна Пуркинье также обладают автоматизмом, однако могут вырабатывать импульсы лишь с частотой 15-35 в минуту и являются автоматическим центром III порядка.

Между автоматическими центрами I, II и III порядков возникают следующие взаимодействия. В норме импульс, возникающий в синусовом узле, распространяется на предсердия и желудочки, вызывая их сокращения. Проходя на своем пути автоматические центры II и III порядков импульс каждый раз вызывает разрядку этих центров. После этого в автоматических центрах II и III порядков снова начинается подготовка очередного импульса, которая каждый раз вновь прерывается после прохождения возбуждения из синусового узла. По сути дела, в норме автоматический центр I порядка подавляет активность автоматических узлов II и III порядков. И только в случае отказа синусового узла или нарушения проведения его импульсов на нижележащие отделы включается автоматический узел II порядка, а при его отказе - автоматический узел III порядка.

Регуляция и координация сократительной функции сердца осуществляются его проводящей системой. Проводя­щая система сердца образована атипичными кардиомиоцитами (сердечные проводящие кардиомиоциты). Эти кардиомиоциты богато иннервированы, имеют небольшие размеры (длина - около 25 мкм, толщина - 10 мкм) по сравнению с кардиомио­цитами миокарда. Клетки проводящей системы не имеют Т-тру-бочек, соединяются между собой не только концами, но и боко­выми поверхностями. Эти клетки содержат значительное коли­чество цитоплазмы и мало миофибрилл. Клетки проводящей системы обладают способностью проводить раздражение от нервов сердца к миокарду предсердий и желудочков. Сердце обладает автоматизмом - способностью самостоятельно сокращаться через определенные промежутки времени. Это становится возможным благодаря возникновению электрических импульсов в самом сердце. Оно продолжает биться при перерезке всех нервов, которые к нему подходят.Импульсы возникают и проводятся по сердцу с помощью так называемой проводящей системы сердца. Рассмотрим компоненты проводящей системы сердца:синусно-предсердный узел,предсердно-желудочковый узел,пучок Гиса с его левой и правой ножкой,волокна Пуркинье. 1)синусно-предсердный узел (= синусовый, синоатриальный)- источник возникновения электрических импульсов в норме. Именно здесь импульсы возникают и отсюда распространяются по сердцу (рисунок с анимацией внизу). Cинусно-предсердный узел расположен в верхней части правого предсердия, между местом впадения верхней и нижней полой вены. Слово “синус” в переводе означает “пазуха”, “полость”. Фраза “ритм синусовый” в расшифровке ЭКГ означает, что импульсы генерируются в правильном месте - синусно-предсердном узле. Нормальная частота ритма в покое - от 60 до 80 ударов в минуту. Частота сердечных сокращений (ЧСС) ниже 60 в минуту называется брадикардией, а выше 90 - тахикардия. У тренированных людей обычно наблюдается брадикардия. 2) предсердно-желудочковый узел (атриовентрикулярный, AV; от лат. ventriculus - желудочек) является, можно сказать, “фильтром” для импульсов из предсердий. Он расположен возле самой перегородки между предсердиями и желудочками. В AV-узле самая низкая скорость распространения электрических импульсов во всей проводящей системе сердца. Она равна примерно 10 см/с (для сравнения: в предсердиях и пучке Гиса импульс распространяется со скоростью 1 м/с, по ножкам пучка Гиса и всем нижележащим отделам вплоть до миокарда желудочков - 3-5 м/с). Задержка импульса в AV-узле составляет около 0.08 с, она необходима, чтобы предсердия успели сократиться раньше и перекачать кровь в желудочк 3) Пучок Гиса (= предсердно-желудочковый пучок) не имеет четкой границы с AV-узлом, проходит в межжелудочковой перегродке и имет длину 2 см, после чего делится на левую и правую ножки соответственно к левому и правому желудочку. Поскольку левый желудочек работает интенсивнее и больше по размерам, то левой ножке приходится разделиться на две ветви - переднюю и заднюю.4) Волокна Пуркинье связывают конечные разветвления ножек и ветвей пучка Гиса с сократительным миокардом желудочков. Способностью генерировать электрические импульсы (т.е. автоматизмом) обладает не только синусовый узел. Природа позаботилась о надежном резервировании этой функции. Синусовый узел является водителем ритма первого порядка и генерирует импульсы в частотой 60-80 в минуту.

Сердце - удивительный орган, обладающий клетками проводящей системы и сократительного миокарда, которые "заставляют" сердце ритмично сокращаться, выполняя функцию кровяного насоса.

  1. синусно-предсердный узел (синусовый узел);
  2. левое предсердие;
  3. предсердно-желудочковый узел (атриовентрикулярный узел);
  4. предсердно-желудочковый пучок (пучок Гиса);
  5. правая и левая ножки пучка Гиса;
  6. левый желудочек;
  7. проводящие мышечные волокна Пуркинье;
  8. межжелудочковая перегородка;
  9. правый желудочек;
  10. правый предсердно-желудочковый клапан;
  11. нижняя полая вена;
  12. правое предсердие;
  13. отверстие венечного синуса;
  14. верхняя полая вена.

Рис.1 Схема строения проводящей системы сердца

Из чего состоит проводящая система сердца?

Сокращения сердечной мышцы (миокарда) происходят благодаря импульсам, возникающим в синусовом узле и распространяющимся по проводящей системе сердца: через предсердия, атриовентрикулярный узел, пучок Гиса, волокна Пуркинье - импульсы проводятся к сократительному миокарду.

Рассмотрим этот процесс подробно:

  1. Возбуждающий импульс возникает в синусовом узле. Возбуждение синусового узла не отражается на ЭКГ.
  2. Через несколько сотых долей секунды импульс из синусового узла достигает миокарда предсердий.
  3. По предсердиям возбуждение распространяется по трем путям, соединяющим синусовый узел (СУ) с атриовентрикулярным узлом (АВУ):
    • Передний путь (тракт Бахмана) - идет по передневерхней стенке правого предсердия и разделяется на две ветви у межпредсердной перегородки - одна из которых подходит к АВУ, а другая - к левому предсердию, в результате чего, к левому предсердию импульс приходит с задержкой в 0,2 с;
    • Средний путь (тракт Венкебаха) - идет по межпредсердной перегородке к АВУ;
    • Задний путь (тракт Тореля) - идет к АВУ по нижней части межпредсердной перегородки и от него ответвляются волокна к стенке правого предсердия.
  4. Возбуждение, передающееся от импульса, охватывает сразу весь миокард предсердий со скоростью 1 м/с.
  5. Пройдя предсердия, импульс достигает АВУ, от которого проводящие волокна распространяются во все стороны, а нижняя часть узла переходит в пучок Гиса.
  6. АВУ выполняет роль фильтра, задерживая прохождение импульса, что создает возможность для окончания возбуждения и сокращения предсердий до того, как начнется возбуждение желудочков. Импульс возбуждения распространяется по АВУ со скоростью 0,05-0,2 м/с; время прохождения импульса по АВУ длится порядка 0,08 с.
  7. Между АВУ и пучком Гиса нет четкой границы. Скорость проведения импульсов в пучке Гиса составляет 1 м/с.
  8. Далее возбуждение распространяется в ветвях и ножках пучка Гиса со скоростью 3-4 м/с. Ножки пучка Гиса, их разветвления и конечная часть пучка Гиса обладают функцией автоматизма, который составляет 15-40 импульсов в минуту.
  9. Разветвления ножек пучка Гиса переходят в волокна Пуркинье, по которым возбуждение распространяется к миокарду желудочков сердца со скоростью 4-5 м/с. Волокна Пуркинье также обладают функцией автоматизма - 15-30 импульсов в минуту.
  10. В миокарде желудочков волна возбуждения сначала охватывает межжелудочковую перегородку, после чего распространяется на оба желудочка сердца.
  11. В желудочках процесс возбуждения идет от эндокарда к эпикарду. При этом во время возбуждения миокарда создается ЭДС, которая распространяется на поверхность человеческого тела и является сигналом, который регистрируется электрокардиографом.

Таким образом, в сердце имеется множество клеток, обладающих функцией автоматизма:

  1. синусовый узел (автоматический центр первого порядка) - обладает наибольшим автоматизмом;
  2. атриовентрикулярный узел (автоматический центр второго порядка);
  3. пучок Гиса и его ножки (автоматический центр третьего порядка).

В норме существует только один водитель ритма - это синусовый узел, импульсы от которого распространяются к нижележащим источникам автоматизма до того, как в них закончится подготовка очередного импульса возбуждения, и разрушают этот процесс подготовки. Говоря проще, синусовый узел в норме является основным источником возбуждения, подавляя аналогичные сигналы в автоматических центрах второго и третьего порядка.

Автоматические центры второго и третьего порядка проявляют свою функцию только в патологических условиях, когда автоматизм синусового узла снижается, или же повышается их автоматизм.

Автоматический центр третьего порядка становится водителем ритма при снижении функций автоматических центров первого и второго порядков, а также при увеличении собственной автоматической функции.

Проводящая система сердца способна проводить импульсы не только в прямом направлении - от предсердий к желудочкам (антеградно), но и в обратном направлении - от желудочков к предсердиям (ретроградно).

Пройти онлайн тест (экзамен) по данной теме...

ВНИМАНИЕ! Информация, представленная сайте сайт носит справочный характер. Администрация сайта не несет ответственности за возможные негативные последствия в случае приема каких-либо лекарств или процедур без назначения врача!