Записать электронные конфигурации элементов третьего периода. Электронные конфигурации атомов химических элементов — Гипермаркет знаний

Лекция 2. Электронная конфигурация элемента

В конце прошлой лекции нами на основании правил Клечковского был построен порядок заполнения электронами энергетических подуровней

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 5d1 4f14 5d9 6p6 7s2 6d1 5f14 6d9 7p6 …

Распределение электронов атома по энергетическим подуровням называется электронной конфигурацией. В первую очередь, при взгляде на ряд заполнения бросается в глаза некая периодичность-закономерность.

Заполнение электронами энергетических орбиталей в основном состоянии атома подчиняется принципу наименьшей энергии: вначале заполняются более выгодные низколежащие орбитали, а затем последовательно более высоколежащие орбитали согласно порядку заполнения.

Проанализируем последовательность заполнения.

Если в составе атома присутствует ровно 1 электрон, он попадает на самую низколежащую 1s -АО (АО – атомная орбиталь). Следовательно, возникающая электронная конфигурация может быть представлена записью 1s1 или графически (См. ниже – стрелочка в квадратике).

Нетрудно понять, что если электронов в атоме больше одного, они последовательно занимают сначала 1s, а затем 2s и, наконец, переходят на 2p-подуровень. Однако уже для шести электронов (атом углерода в основном состоянии) возникают две возможности: заполнение 2p-подуровня двумя электронами с одинаковым спином или с противоположным.

Приведем простую аналогию: предположим, что атомные орбитали являются своеобразными «комнатами» для «жильцов», в роли которых выступают электроны. Из практики хорошо известно, что жильцы предпочитают по возможности занимать каждый отдельную комнату, а не тесниться в одной.

Аналогичное поведение характерно и для электронов, что находит отражение в правиле Гунда:

Правило Гунда : устойчивому состоянию атома соответствует такое распределение электронов в пределах энергетического подуровня, при котором суммарный спин максимален.

Состояние атома с минимальной энергией называется основным, а все остальные – возбужденными состояниями атома.

Лекция 2. Электронная конфигурация

Атомы элементов I и II периодов

1 электрон

2 электрона

3 электрона

4 электрона

5 электронов

6 электронов

7 электронов

8 электронов

9 электронов

10Ne

10 электронов

Элемент всего e-

электронная конфигурация

распределение электронов

Тогда, на основании правила Гунда, для азота основное состояние предполагает наличие трех неспаренных p -электронов (электронная конфигурация …2p3 ). В атомах кислорода, фтора и неона происходит последовательное спаривание электронов и заполнение 2p-подуровня.

Обратим внимание, что третий период Периодической системы начинает атом натрия,

конфигурация которого (11 Na … 3s1 ) очень похожа на конфигурацию лития (3 Li … 2s1 )

за тем исключением, что главное квантовое число n равно трем, а не двум.

Заполнение электронами энергетических подуровней в атомах элементов III периода в точности аналогично наблюдавшемуся для элементов II периода: у атома магния завершается заполнение 3s-подуровня, затем от алюминия до аргона электроны последовательно размещаются на 3p-подуровне согласно правилу Гунда: сначала на АО размещаются отдельные электроны (Al, Si, P), затем происходит их спаривание.

Атомы элементов III периода

11Na

12Mg

13Al

14Si

17Cl

18Ar

сокращенная

распределение e-

Лекция 2. Электронная конфигурация

Четвертый период Периодической системы начинается с заполнения электронами 4s-подуровня в атомах калия и кальция. Как следует из порядка заполнения, затем наступает очередь 3d -орбиталей.

Таким образом, можно заключить, что заполнение электронами d -АО «опаздывает» на 1 период: вIV периоде заполняется 3(!) d -подуровень).

Итак, от Sc до Zn происходит заполнение электронами 3d -подуровня (10 электронов), затем от Ga до Kr заполняется 4p -подуровень.

Атомы элементов IV периода

20Ca

21Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

4s2 3d1

1s2 2s2 2p6 3s2 3p6 4s2 3d2

22Ti

4s2 3d2

30Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

4s2 3d10

31Ga

1s 2s 2p 3s 3p 4s 3d

36Kr

1s 2s 2p 3s 3p 4s 3d

сокращенная

распределение e-

Заполнение электронами энергетических подуровней в атомах элементов V периода в точности аналогично наблюдавшемуся для элементов IV периода

(разобрать самостоятельно)

В шестом периоде сначала заполняется электронами 6s-подуровень (атомы55 Cs и

56 Ba), а затем один электрон располагается на 5d -орбитали лантана (57 La 6s2 5d1 ).

У следующих 14 элементов (с 58 по 71) заполняется 4f -подуровень, т.е. заполнение f- орбиталей «опаздывает» на 2 периода, при этом электрон на 5d -подуровне сохраняется. Например, следует записать электронную конфигурацию церия

58 Ce 6s2 5d 1 4 f 1

Начиная с 72-элемента (72 Hf) и до 80 (80 Hg) происходит «дозаполнение» 5d -подуровня.

Следовательно, электронные конфигурация гафния и ртути имеют вид

72 Hf 6s2 5d 1 4 f 14 5d 1 или допустима запись72 Hf 6s2 4 f 14 5d 2 80 Hg 6s2 5d 1 4 f 14 5d 9 или80 Hg 6s2 4 f 14 5d 10

Лекция 2. Электронная конфигурация

Аналогичным образом происходит заполнение электронами энергетических подуровней в атомах элементов VII периода.

Определение квантовых чисел из электронной конфигурации

Что такое квантовые числа, как они появились и зачем нужны – см. Лекция 1.

Дано: запись электронной конфигурации «3p 4 »

Главное квантовое число n – первая цифра в записи, т.е. «3». n = 3 «3 p4 », главное квантовое число;

Побочное (орбитальное, азимутальное) квантовое число l закодировано буквенным обозначением подуровня. Букваp соответствует числуl = 1.

форма облака

l = 1 «3p 4 »,

«гантеля»

Распределение электронов в пределах подуровня согласно принципу Паули и правилу Гунда

m Є [-1;+1] – орбитали одинаковы (вырождены) по энергииn = 3, l = 1, m Є [-1;+1] (m = -1); s = + ½

n = 3, l = 1, m Є [-1;+1] (m = 0); s = + ½n = 3, l = 1, m Є [-1;+1] (m = +1); s = + ½ n = 3, l = 1, m Є [-1;+1] (m = -1); s = - ½

Валентный уровень и валентные электроны

Валентным уровнем называется набор энергетических подуровней, которые участвуют в образовании химических связей с другими атомами.

Валентными называются электроны, располагающиеся на валентном уровне.

Элементы ПСХЭ делятся на 4 группы

s -элементы . Валентные электроны ns x . Два s -элемента находятся в начале каждого периода.

p -элементы . Валентные электроны ns 2 np x . Шесть p -элементов располагаются в конце каждого периода (кроме первого и седьмого).

Лекция 2. Электронная конфигурация

d -элементы. Валентные электроны ns 2 (n-1)d x . Десять d -элементов образуют побочные подгруппы, начиная с IV периода и находятся междуs- и p- элементами.

f -элементы. Валентные электроны ns 2 (n-1)d 1 (n-2)f x . Четырнадцать f -элементов образуют ряды лантаноидов (4f ) и актиноидов (5f ), которые расположены под таблицей.

Электронные аналоги – это частицы, для которых характерны сходные электронные конфигурации, т.е. распределение электронов по подуровням.

Например

H 1s1 Li … 2s1 Na … 3s1 K … 4s1

Электронные аналоги обладают сходными электронными конфигурациями, поэтому их химические свойства похожи – и они располагаются в Периодической системе элементов в одной подгруппе.

Электронный «провал» (или электронный «проскок»)

Квантовая механика предсказывает, что наименьшей энергией обладает такое состояние частицы, когда все уровни заполнены электронами либо полностью, либо наполовину.

Поэтому для элементов подгруппы хрома (Cr, Mo, W, Sg) иэлементов подгруппы меди (Cu, Ag, Au) происходит перемещение 1 электрона сs - на d- подуровень.

24 Cr 4s2 3d4 24 Cr 4s1 3d5 29 Cu 4s2 3d9 29 Cu 4s1 3d10

Это явление получило название электронный «провал», его следует запомнить.

Подобное явление характерно также и для f -элементов, однако их химия выходит за рамки нашего курса.

Обратите внимание: для p-элементов электронный провал НЕ наблюдается!

Подводя итоги, следует заключить, что количество электронов в атоме определяется составом его ядра, а их распределение (электронная конфигурация) – наборами

Лекция 2. Электронная конфигурация

квантовых чисел. В свою очередь, электронная конфигурация определяет химические свойства элемента.

Поэтому, очевидно, что Свойства простых веществ, а также свойства соединений

элементов находятся в периодической зависимости от величины заряда ядра

атома (порядкового номера).

Периодический закон

Основные свойства атомов элементов

1. Радиус атома – расстояние от центра ядра до внешнего энергетического уровня. В

периоде по мере увеличения заряда ядра радиус атома уменьшается; в группе,

наоборот, по мере числа энергетических уровней, радиус атома растет.

Следовательно, в ряду O2- , F- , Ne, Na+ , Mg2+ - радиус частицы уменьшается, хотя их конфигурация одинакова 1s2 2s2 2p6 .

Для неметаллов говорят о ковалентном радиусе, для металлов – о металлическом радиусе, для ионов – об ионном радиусе.

2. Потенциал ионизации – это энергия, которую нужно истратить на отрыв от атома 1

электрона. По принципу наименьшей энергии в первую очередь отрывается последний по заполнению электрон (для s и p -элементов) и электрон внешнего энергетического уровня (дляd и f -элементов)

В периоде по мере роста заряда ядра потенциал ионизации растет – в начале периода находится щелочной металл с низким потенциалом ионизации, в конце периода – инертный газ. В группе потенциалы ионизации ослабевают.

Энергия ионизации, эВ

3. Сродство к электрону – энергия, выделяющаяся при присоединении к атому электрона, т.е. при образовании аниона.

4. Электроотрицательность (ЭО) – это способность атомов притягивать к себе электронную плотность. В отличие от потенциала ионизации, за которым стоит конкретная измеряемая физическая величина, ЭО – это некоторая величина, которая может быть только рассчитана , измерить её нельзя. Иными словами, ЭО придумали люди, для того, чтобы с её помощью объяснять те или иные явления.

Для наших учебных целей требуется запомнить качественный порядок изменения

электроотрицательности: F > O > N > Cl > … > H > … > металлы.

ЭО – способность атома смещать к себе электронную плотность, – очевидно,

возрастает в периоде (так как увеличивается заряд ядра – сила притяжения электрона и уменьшается радиус атома) и, напротив, ослабевает в группе.

Нетрудно понять, что раз период начинается электроположительным металлом,

а заканчивается типичным неметаллом VII группы (инертные газы в расчет не принимаем), то степень изменения ЭО в периоде больше, чем в группе.

Лекция 2. Электронная конфигурация

5. Степень окисления – это условный заряд атома в химическом соединении,

вычисленный в приближении, что все связи образованы ионами. Минимальная степень окисления определяется тем, сколько электронов атом способен принять на

отображают последовательность соединения атомов друг с другом. Рассмотрим по отдельности каждую пару атомов и обозначим стрелочкой смещение электронов к тому атому из пары, ЭО которого больше (б). Следовательно, электроны сместились – и образовались заряды – положительные и отрицательные:

на конце каждой стрелочки заряд (-1), соответствующий добавлению 1 электрона;

на основании стрелочки заряд (+1), соответствующий удалению 1 электрона.

Получившиеся заряды и есть степень окисления того или иного атома.

H +1

H +1

На этом на сегодня все, спасибо за внимание.

Литература

1. С.Г. Барам, М.А. Ильин. Химия в Летней школе. Учеб. пособие / Новосиб. гос.

ун-т, Новосибирск, 2012. 48 с.

2. А.В. Мануйлов, В.И. Родионов. Основы химии для детей и взрослых. – М.:

ЗАО Издательство Центрполиграф, 2014. – 416 с. – см. с. 29-85. http://www.hemi.nsu.ru/

Задача 1 . Напишите электронные конфигурации следующих элементов: N , Si , F е, Кr , Те, W .

Решение. Энергия атомных орбиталей увеличивается в следующем порядке:

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d .

На каждой s -оболочке (одна орбиталь) может находиться не более двух электронов, на p -оболочке (три орбитали) - не более шести, на d -оболочке (пять орбиталей) - не более 10 и на f -оболочке (семь орбиталей) - не более 14.

В основном состоянии атома электроны занимают орбитали с наименьшей энергией. Число электронов равно заряду ядра (атом в целом нейтрален) и порядковому номеру элемента. Например, в атоме азота - 7 электронов, два из которых находятся на 1s -орбитали, два - на 2s -орбитали, и оставшиеся три электрона - на 2p -орбиталях. Электронная конфигурация атома азота:

7 N : 1s 2 2s 2 2p 3 . Электронные конфигурации остальных элементов:

14 Si: 1s 2 2s 2 2p 6 3s 2 3p 2 ,

26 F е: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 ,

36 Кr: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 ,

52 Те: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 5s 2 4d 10 5p 4 ,

74 Те: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 4 .

Задача 2 . Какой инертный газ и ионы каких элементов имеют одинаковую электронную конфигурацию с частицей, возникающей в результате удаления из атома кальция всех валентных электронов?

Решение. Электронная оболочка атома кальция имеет струк­туру 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 . При удалении двух валентных электронов образуется ион Са 2+ с конфигурацией 1s 2 2s 2 2р 6 Зs 2 Зр 6 . Такую же электронную конфигурацию имеют атом Ar и ионы S 2- , Сl — , К + , Sc 3+ и др.

Задача 3 . Могут ли электроны иона Аl 3+ находиться на следующих орбиталях: а) 2р; б) 1р; в) 3d ?

Решение. Электронная конфигурация атома алюминия: 1s 2 2s 2 2p 6 3s 2 3p 1 . Ион Al 3+ образуется при удалении трех валентных электронов из атома алюминия и имеет электронную конфи­гурацию 1s 2 2s 2 2p 6 .

а) на 2р-орбитали электроны уже находятся;

б) в соответствии с ограничениями, накладываемыми на квантовое число l (l = 0, 1,…n -1), при n = 1 возможно только значение l = 0, следовательно, 1p -орбиталь не существует;

в) на Зd -орбитали электроны могут находиться, если ион - в возбужденном состоянии.

Задача 4. Напишите электронную конфигурацию атома неона в первом возбужденном состоянии.

Решение. Электронная конфигурация атома неона в основном состоянии – 1s 2 2s 2 2p 6 . Первое возбужденное состояние получается при переходе одного электрона с высшей занятой орбитам (2р) на низшую свободную орбиталь (3s ). Электронная конфигурация атома неона в первом возбужденном состоянии – 1s 2 2s 2 2p 5 3s 1 .

Задача 5 . Каков состав ядер изотопов 12 C и 13 C , 14 N и 15 N ?

Решение. Число протонов в ядре равно порядковому номеру элемента и одинаково для всех изотопов данного элемента. Число нейтронов равно массовому числу (указываемому слева вверху от номера элемента) за вычетом числа протонов. Разные изотопы одного и того же элемента имеют разные числа нейтронов.

Состав указанных ядер:

12 С: 6р + 6n ; 13 С: 6р + 7n ; 14 N : 7p + 7n ; 15 N : 7p + 8n .

Определите, атомы каких из указанных в ряду элементов имеют на внешнем энергетическом уровне четыре электрона.

Ответ: 35

Пояснение:

Количество электронов на внешнем энергетическом уровне (электронном слое) элементов главных подгрупп равно номеру группы.
Таким образом, из представленных вариантов ответов подходят кремний и углерод, т.к. они находятся в главной подгруппе четвертой группы таблицы Д.И. Менделеева (IVA группа), т.е. верны ответы 3 и 5.

Определите, у атомов каких их указанных в ряду элементов в основном состоянии число неспаренных электронов на внешнем уровне равно 1.

Запишите в поле ответа номера выбранных элементов.

Ответ: 24

Пояснение:

Барий — элемент главной подгруппы второй группы и шестого периода Периодической системы Д. И. Менделеева, следовательно, электронная конфигурация его внешнего слоя будет 6s 2 . На внешнем 6s s -орбитали, атома бария расположено 2 спаренных электрона с противоположными спинами (полное заполнение подуровня).

Алюминий — элемент главной подгруппы третьей группы и третьего периода Периодической системы, и электронная конфигурация внешнего слоя атома алюминия — 3s 2 3p 1: на 3s -подуровне (состоит из одной s -орбитали) расположено 2 спаренных электрона с противоположными спинами (полное заполнение), а на 3p -подуровне — один неспаренный электрон. Таким образом, у алюминия в основном состоянии число неспаренных электронов на внешнем энергетическом уровне равно 1.

Азот — элемент главной подгруппы пятой группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома азота — 2s 2 2p 3 : на 2s -подуровне расположено 2 спаренных электрона с противоположными спинами, а на 2p p -орбиталей (p x , p y , p z ) — три неспаренных электрона, каждый из которых находится на каждой орбитали. Таким образом, у алюминия в основном состоянии число неспаренных электронов на внешнем энергетическом уровне равно 1.

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы, электронная конфигурация внешнего слоя атома хлора — 3s 2 3p 5 : на 3s -подуровне расположено 2 спаренных электрона с противоположными спинами, а на 3p -подуровне, состоящего из трех p -орбиталей (p x , p y , p z ) — 5 электронов: 2 пары спаренных электронов на орбиталях p x , p y и один неспаренный — на орбитали p z. Таким образом, у хлора в основном состоянии число неспаренных электронов на внешнем энергетическом уровне равно 1.

Кальций — элемент главной подгруппы второй группы и четвертого периода Периодической системы Д. И. Менделеева. Электронная конфигурация его внешнего слоя схожа с электронной конфигурацией атома бария. На внешнем 4s -подуровне, состоящем из одной s -орбитали, атома кальция расположено 2 спаренных электрона с противоположными спинами (полное заполнение подуровня).

Определите, у атомов каких их указанных в ряду элементов все валентные электроны расположены на 4s -энергетическом подуровне.

Запишите в поле ответа номера выбранных элементов.

Ответ: 25

Пояснение:

s 2 3p 5 , т.е. валентные электроны хлора расположены на 3s- и 3p -подуровнях (3-ий период).

Калий — элемент главной подгруппы первой группы и четвертого периода Периодической системы, и электронная конфигурация внешнего слоя атома калия — 4s 1 , т.е. единственный валентный электрон атома калия расположен на 4s -подуровне (4-ый период).

Бром — элемент главной подгруппы седьмой группы и четвертого периода Периодической системы, электронная конфигурация внешнего слоя атома брома — 4s 2 4p 5 , т.е. валентные электроны атома брома расположены на 4s- и 4p -подуровнях (4-ый период).

Фтор — элемент главной подгруппы седьмой группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома фтора — 2s 2 2p 5 , т.е. валентные электроны атома фтора расположены на 2s- и 2p- подуровнях. Однако, ввиду высокой электроотрицательности фтора только единственный электрон, расположенный на 2p- подуровне, участвует в образовании химической связи.

Кальций — элемент главной подгруппы второй группы и четверного периода Периодической системы Д. И. Менделеева, электронная конфигурация его внешнего слоя — 4s 2 , т.е. валентные электроны расположены на 4s -подуровне (4-ый период).

Определите, у атомов каких их указанных в ряду элементов валентные электроны расположены на третьем энергетическом уровне.

Запишите в поле ответа номера выбранных элементов.

Ответ: 15

Пояснение:

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя хлора — 3s 2 3p 5 , т.е. валентные электроны хлора расположены на третьем энергетическом уровне (3-ий период).

s 2 2p 3 , т.е. валентные электроны азота расположены на втором энергетическом уровне (2-ой период).

Углерод — элемент главной подгруппы четвертой группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома углерода — 2s 2 2p 2 , т.е. валентные электроны атома углерода расположены на втором энергетическом уровне (2-ой период).

Бериллий — элемент главной подгруппы второй группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома бериллия — 2s 2 , т.е. валентные электроны атома бериллия расположены на втором энергетическом уровне (2-ой период).

Фосфор — элемент главной подгруппы пятой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация его внешнего слоя — 3s 2 3p 3 , т.е. валентные электроны атома фосфора расположены на третьем энергетическом уровне (3-ий период).

Определите, у атомов каких их указанных в ряду элементов на d -подуровнях электронов нет.

Запишите в поле ответа номера выбранных элементов.

Ответ: 12

Пояснение:

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация атома хлора — 1s 2 2s 2 2p 6 3s 2 3p 5 , т.е. d -подуровня у атома хлора не существует.

Фтор — элемент главной подгруппы седьмой группы и второго периода Периодической системы Д. И. Менделеева, электронная конфигурация атома фтора — 1s 2 2s 2 2p 5 , т.е. d -подуровня у атома фтора также не существует.

Бром — элемент главной подгруппы седьмой группы и четвертого периода Периодической системы Д. И. Менделеева, электронная конфигурация атома брома — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 , т.е. у атома брома существует полностью заполненный 3d -подуровень.

Медь — элемент побочной подгруппы первой группы и четвертого периода Периодической системы, электронная конфигурация атома меди — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 , т.е. у атома меди существует полностью заполненный 3d -подуровень.

Железо — элемент побочной подгруппы восьмой группы и четвертого периода Периодической системы Д. И. Менделеева, электронная конфигурация атома железа — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 , т.е. у атома железа существует незаполненный 3d -подуровень.

Определите, атомы каких из указанных в ряду элементов относятся к s -элементам.

Запишите в поле ответа номера выбранных элементов.

Ответ: 15

Пояснение:

Гелий — элемент главной подгруппы второй группы и первого периода Периодической системы Д. И. Менделеева, электронная конфигурация атома гелия — 1s 2 , т.е. валентные электроны атома гелия расположены только на 1s -подуровне, следовательно, гелий можно отнести к s -элементам.

Фосфор — элемент главной подгруппы пятой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома фосфора — 3s 2 3p 3 , следовательно, фосфор относится к p -элементам.

s 2 3p 1 , следовательно, алюминий относится к p -элементам.

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома хлора — 3s 2 3p 5 , следовательно, хлор относится к p -элементам.

Литий — элемент главной подгруппы первой группы и второго периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома лития — 2s 1 , следовательно, литий относится к s -элементам.

Определите, атомы каких из указанных в ряду элементов в возбужденном состоянии имеют электронную конфигурацию внешнего энергетического уровня ns 1 np 2 .

Запишите в поле ответа номера выбранных элементов.

Ответ: 12

Пояснение:

Бор — элемент главной подгруппы третьей группы и второго периода Периодической системы Д. И. Менделеева, электронная конфигурация атома бора в основном состоянии — 2s 2 2p 1 . При переходе атома бора в возбужденное состояние электронная конфигурация становится 2s 1 2p 2 за счет перескока электрона с 2s- на 2p- орбиталь.

Алюминий — элемент главной подгруппы третьей группы и третьего периода Периодической системы, электронная конфигурация внешнего слоя атома алюминия — 3s 2 3p 1 . При переходе атома алюминия в возбужденное состояние электронная конфигурация становится 3s 1 3 p 2 за счет перескока электрона с 3s- на 3p- орбиталь.

Фтор — элемент главной подгруппы седьмой группы и второго периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома фтора — 3s 2 3p 5 . В данном случае в возбужденном состоянии невозможно получить электронную конфигурацию внешнего электронного уровня ns 1 np 2 .

Железо — элемент побочной подгруппы восьмой группы и четвертого периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома железа — 4s 2 3d 6 . В данном случае в возбужденном состоянии также невозможно получить электронную конфигурацию внешнего электронного уровня ns 1 np 2 .

Азот — элемент главной подгруппы пятой группы и второго периода Периодической системы, и электронная конфигурация внешнего слоя атома азота — 2s 2 2p 3 . В данном случае в возбужденном состоянии также невозможно получить электронную конфигурацию внешнего электронного уровня ns 1 np 2 .

Определите, для атомов каких из указанных в ряду элементов возможен переход в возбужденное состояние.

Запишите в поле ответа номера выбранных элементов.

Ответ: 23

Пояснение:

Рубидий и цезий — элементы главной подгруппы первой группы Периодической системы Д. И. Менделеева, являются щелочными металлами, у атомов которых на внешнем энергетическом уровне расположен один электрон. Поскольку s -орбиталь для атомов данных элементов является внешней, невозможен перескок электрона с s — на p -орбиталь, и следовательно, не характерен переход атома в возбужденное состояние.

Атом азота не способен переходить в возбужденное состояние т.к. заполняемым у него является 2-й энергетический уровень и на этом энергетическом уровне отсутствуют свободные орбитали.

Алюминий — элемент главной подгруппы третьей группы Периодической системы химических элементов, электронная конфигурация внешнего слоя атома алюминия — 3s 2 3p 1 . При переходе атома алюминия в возбужденное состояние происходит перескок электрона с 3s- на 3p- орбиталь, и электронная конфигурация атома алюминия становится 3s 1 3 p 2 .

Углерод — элемент главной подгруппы четвертой группы Периодической системы, электронная конфигурация внешнего слоя атома углерода — 2s 2 2p 2 . При переходе атома углерода в возбужденное состояние происходит перескок электрона с 2s- на 2p- орбиталь, и электронная конфигурация атома углерода становится 2s 1 2p 3 .

Определите, атомам каких из указанных в ряду элементов соответствует электронная конфигурация внешнего электронного слоя ns 2 np 3 .

Запишите в поле ответа номера выбранных элементов.

Ответ: 23

Пояснение:

Электронная конфигурация внешнего электронного слоя ns 2 np 3 говорит о том, что заполняемым у искомых элементов является p подуровень, т.е. это p -элементы. Все p -элементы расположены в 6-ти последних ячейках каждого периода в группе, номер которой равен сумме электронов на s и p подуровнях внешнего слоя, т.е. 2+3 = 5. Таким образом искомые элементы — азот и фосфор.

Определите, атомы каких из указанных в ряду элементов имеют сходную конфигурацию внешнего энергетического уровня.

Запишите в поле ответа номера выбранных элементов.

Ответ: 34
Среди перечисленных элементов сходную электронную конфигурацию имеют бром и фтор. Электронная конфигурация внешнего слоя имеет вид ns 2 np 5

Определите, атомы каких из указанных в ряду элементов имеют полностью завершенный второй электронный уровень.

Запишите в поле ответа номера выбранных элементов.

Ответ: 13

Пояснение:

Заполненный 2-й электронный уровень имеет благородный газ неон, а также любой химический элемент, расположенный в таблице Менделеева после него.

Определите, у атомов каких из указанных в ряду элементов для завершения внешнего энергетического уровня не достает 2 электронов.

Запишите в поле ответа номера выбранных элементов.

Ответ: 34

До завершения внешнего электронного уровня 2 электрона недостает p -элементам шестой группы. Напомним, что все p -элементы расположены в 6-ти последних ячейках каждого периода.

Определите, атомы каких из указанных в ряду элементов в возбужденном состоянии имеют электронную формулу внешнего энергетического уровня ns 1 np 3 .

Запишите в поле ответа номера выбранных элементов.

Ответ: 24

Пояснение:

s 1 np 3 говорит нам о том, что на внешнем энергетическом уровне (электронном слое) находится 4 электрона (1+3). Среди указанных элементов 4 электрона на внешнем уровне имеют только атомы кремния и углерода.

Электронная конфигурация внешнего энергетического уровня данных элементов в основном состоянии имеет вид ns 2 np 2 , а в возбужденном ns 1 np 3 (при возбуждении атомов углерода и кремния происходит распаривание электронов s-орбитали и один электрон попадает на свободную p -орбиталь).

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют электронную формулу внешнего энергетического уровня ns 2 np 4 .

Запишите в поле ответа номера выбранных элементов.

Ответ: 25

Пояснение:

Формула внешнего энергетического уровня ns 2 np 4 говорит нам о том, что на внешнем энергетическом уровне (электронном слое) находится 6 электронов (2+4). Количество электронов на внешнем электронном уровне для элементов главных подгрупп всегда равно номеру группы. Таким образом, электронную конфигурацию ns 2 np 4 среди указанных элементов имеют атомы селена и серы, так как данные элементы расположены в VIA группе.

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют только один неспаренный электрон.

Запишите в поле ответа номера выбранных элементов.

Ответ: 25

Определите, атомы каких из элементов имеет конфигурацию внешнего электронного уровня ns 2 np 3 .

Ответ: 45

Определите, атомы каких из указанных в ряду элементов в основном состоянии не содержат неспаренных электронов.
Запишите в поле ответа номера выбранных элементов.

>> Химия: Электронные конфигурации атомов химических элементов

Швейцарский физик В. Паули в 1925 г. установил, что в атоме на одной орбитали может находиться не более двух электронов, имеющих противоположные (антипараллельные) спины (в переводе с английского «веретено»), то есть обладающих такими свойствами, которые условно можно представить себе как вращение электрона вокруг своей воображаемой оси: по часовой или против часовой стрелки. Этот принцип носит название принципа Паули.

Если на орбитали находится один электрон, то он называется неспаренным, если два, то это спаренные электроны, то есть электроны с противоположными спинами.

На рисунке 5 показана схема подразделения энергетических уровней на подуровни.

s-Орбиталь, как вы уже знаете, имеет сферическую форму. Электрон атома водорода (s = 1) располагается на этой ор-битали и неспарен. Поэтому его электронная формула или электронная конфигурация будет записываться так: 1s 1 . В электронных формулах номер энергетического уровня обозначается цифрой, стоящей перед буквой (1 ...), латинской буквой обозначают подуровень (тип орбитали), а цифра, которая записывается справа вверху от буквы (как показатель степени), показывает число электронов на подуровне.

Для атома гелия Не, имеющего два спаренных электрона на одной s-орбитали, эта формула: 1s 2 .

Электронная оболочка атома гелия завершена и очень устойчива. Гелий - это благородный газ.

На втором энергетическом уровне (n = 2) имеется четыре орбитали: одна s и три р. Электроны s-орбитали второго уровня (2s-орбитали) обладают более высокой энергией, так как находятся на большем расстоянии от ядра, чем электроны 1s-орбитали (n = 2).

Вообще, для каждого значения n существует одна s-орбиталь, но с соответствующим запасом энергии электронов на нем и, следовательно, с соответствующим диаметром, растущим по мере увеличения значения n.

р-Орбиталь имеет форму гантели или объемной восьмерки. Все три р-орбитали расположены в атоме взаимно перпендикулярно вдоль пространственных координат, проведенных через ядро атома. Следует подчеркнуть еще раз, что каждый энергетический уровень (электронный слой), начиная с n = 2, имеет три р-орбитали. С увеличением значения n электроны анимают р-орбитали, расположенные на больших расстояниях от ядра и направленные по осям х, у, г.

У элементов второго периода (n = 2) заполняется сначала одна в-орбиталь, а затем три р-орбитали. Электронная формула 1л: 1s 2 2s 1 . Электрон слабее связан с ядром атома, поэтому атом лития может легко отдавать его (как вы, очевидно, помните, этот процесс называется окислением), превращаясь в ион Li+.

В атоме бериллия Ве 0 четвертый электрон также размещается на 2s-орбитали: 1s 2 2s 2 . Два внешних электрона атома бериллия легко отрываются - Ве 0 при этом окисляется в катион Ве 2+ .

У атома бора пятый электрон занимает 2р-орбиталь: 1s 2 2s 2 2р 1 . Далее у атомов С, N, О, Е идет заполнение 2р-орбиталей, которое заканчивается у благородного газа неона: 1s 2 2s 2 2р 6 .

У элементов третьего периода заполняются соответственно Зв- и Зр-орбитали. Пять d-орбиталей третьего уровня при этом остаются свободными:

11 Nа 1s 2 2s 2 Зв1; 17С11в22822р63р5; 18Аг П^Ёр^Зр6.

Иногда в схемах, изображающих распределение электронов в атомах, указывают только число электронов на каждом энергетическом уровне, то есть записывают сокращенные электронные формулы атомов химических элементов, в отличие от приведенных выше полных электронных формул.

У элементов больших периодов (четвертого и пятого) первые два электрона занимают соответственно 4я- и 5я-орбитали: 19 К 2, 8, 8, 1; 38 Sr 2, 8, 18, 8, 2. Начиная с третьего элемента каждого большого периода, последующие десять электронов поступят на предыдущие 3d- и 4d- орбитали соответственно (у элементов побочных подгрупп): 23 V 2, 8, 11, 2; 26 Tr 2, 8, 14, 2; 40 Zr 2, 8, 18, 10, 2; 43 Тг 2, 8, 18, 13, 2. Как правило, тогда, когда будет заполнен предыдущий d-подуровень, начнет заполняться внешний (соответственно 4р- и 5р) р-подуровень.

У элементов больших периодов - шестого и незавершенного седьмого - электронные уровни и подуровни заполняются электронами, как правило, так: первые два электрона поступят на внешний в-подуровень: 56 Ва 2, 8, 18, 18, 8, 2; 87Гг 2, 8, 18, 32, 18, 8, 1; следующий один электрон (у Nа и Ас) на предыдущий (p-подуровень: 57 Lа 2, 8, 18, 18, 9, 2 и 89 Ас 2, 8, 18, 32, 18, 9, 2.

Затем последующие 14 электронов поступят на третий снаружи энергетический уровень на 4f- и 5f-орбитали соответственно у лантаноидов и актиноидов.

Затем снова начнет застраиваться второй снаружи энергетический уровень (d-подуровень): у элементов побочных подгрупп: 73 Та 2, 8,18, 32,11, 2; 104 Rf 2, 8,18, 32, 32,10, 2, - и, наконец, только после полного заполнения десятью электронами сйгоду-ровня будет снова заполняться внешний р-подуровень:

86 Rn 2, 8, 18, 32, 18, 8.

Очень часто строение электронных оболочек атомов изображают с помощью энергетических или квантовых ячеек - записывают так называемые графические электронные формулы. Для этой записи используют следующие обозначения: каждая квантовая ячейка обозначается клеткой, которая соответствует одной орбитали; каждый электрон обозначается стрелкой, соответствующей направлению спина. При записи графической электронной формулы следует помнить два правила: принцип Паули, согласно которому в ячейке (орбитали) может быть не более двух электронов, но с антипараллельными спинами, и правило Ф. Хунда, согласно которому электроны занимают свободные ячейки (орбитали), располагаются в них сначала по одному и имеют при этом одинаковое значение спина, а лишь затем спариваются, но спины при этом по принципу Паули будут уже противоположно направленными.

В заключение еще раз рассмотрим отображение электронных конфигураций атомов элементов по периодам системы Д. И. Менделеева . Схемы электронного строения атомов показывают распределение электронов по электронным слоям (энергетическим уровням).

В атоме гелия первый электронный слой завершен - в нем 2 электрона.

Водород и гелий - s-элементы, у этих атомов заполняется электронами s-орбиталь.

Элементы второго периода

У всех элементов второго периода первый электронный слой заполнен и электроны заполняют е- и р-орбитали второго электронного слоя в соответствии с принципом наименьшей энергии (сначала s-, а затем р) и правилами Паули и Хунда (табл. 2).

В атоме неона второй электронный слой завершен - в нем 8 электронов.

Таблица 2 Строение электронных оболочек атомов элементов второго периода

Окончание табл. 2

Li, Ве - в-элементы.

В, С, N, О, F, Nе - р-элементы, у этих атомов заполняются электронами р-орбитали.

Элементы третьего периода

У атомов элементов третьего периода первый и второй электронные слои завершены, поэтому заполняется третий электронный слой, в котором электроны могут занимать Зs-, 3р- и Зd-подуровни (табл. 3).

Таблица 3 Строение электронных оболочек атомов элементов третьего периода

У атома магния достраивается Зs-электронная орбиталь. Nа и Mg- s-элементы.

В атоме аргона на внешнем слое (третьем электронном слое) 8 электронов. Как внешний слой, он завершен, но всего в третьем электронном слое, как вы уже знаете, может быть 18 электронов, а это значит, что у элементов третьего периода остаются незаполненными Зd-орбитали.

Все элементы от Аl до Аг - р-элементы. s- и р-элементы образуют главные подгруппы в Периодической системе.

У атомов калия и кальция появляется четвертый электронный слой, заполняется 4s-подуровень (табл. 4), так как он имеет меньшую энергию, чем Зй-подуровень. Для упрощения графических электронных формул атомов элементов четвертого периода: 1) обозначим условно графическую электронную формулу аргона так:
Аr;

2) не будем изображать подуровни, которые у этих атомов не заполняются.

Таблица 4 Строение электронных оболочек атомов элементов четвертого периода


К, Са - s-элементы, входящие в главные подгруппы. У атомов от Sс до Zn заполняется электронами Зй-подуровень. Это Зй-элементы. Они входят в побочные подгруппы, у них заполняется предвнешний электронный слой, их относят к переходным элементам.

Обратите внимание на строение электронных оболочек атомов хрома и меди. В них происходит «провал» одного электрона с 4я- на Зй-подуровень, что объясняется большей энергетической устойчивостью образующихся при этом электронных конфигураций Зd 5 и Зd 10:

В атоме цинка третий электронный слой завершен - в нем заполнены все подуровни 3s, Зр и Зd, всего на них 18 электронов.

У следующих за цинком элементов продолжает заполняться четвертый электронный слой, 4р-подуровень: Элементы от Gа до Кr - р-элементы.

У атома криптона внешний слой (четвертый) завершен, имеет 8 электронов. Но всего в четвертом электронном слое, как вы знаете, может быть 32 электрона; у атома криптона пока остаются незаполненными 4d- и 4f- подуровни.

У элементов пятого периода идет заполнение подуровней в следующем порядке: 5s-> 4d -> 5р. И также встречаются исключения, связанные с «провалом» электронов, у 41 Nb, 42 MO и т.д.

В шестом и седьмом периодах появляются элементы, то есть элементы, у которых идет заполнение соответственно 4f- и 5f-подуровней третьего снаружи электронного слоя.

4f-Элементы называют лантаноидами.

5f-Элементы называют актиноидами.

Порядок заполнения электронных подуровней в атомах элементов шестого периода: 55 Сs и 56 Ва - 6s-элементы;

57 Lа... 6s 2 5d 1 - 5d-элемент; 58 Се - 71 Lu - 4f-элементы; 72 Hf - 80 Нg - 5d-элементы; 81 Тl- 86 Rn - 6р-элементы. Но и здесь встречаются элементы, у которых «нарушается» порядок заполнения электронных орбиталей, что, например, связано с большей энергетической устойчивостью наполовину и полностью заполненных f подуровней, то есть nf 7 и nf 14 .

В зависимости от того, какой подуровень атома заполняется электронами последним, все элементы, как вы уже поняли, делят на четыре электронных семейства или блока (рис. 7).

1) s-Элементы; заполняется электронами в-подуровень внешнего уровня атома; к s-элементам относятся водород, гелий и элементы главных подгрупп I и II групп;

2) р-элементы; заполняется электронами р-подуровень внешнего уровня атома; к р элементам относятся элементы главных подгрупп III-VIII групп;

3) d-элементы; заполняется электронами d-подуровень предвнешнего уровня атома; к d-элементам относятся элементы побочных подгрупп I-VIII групп, то есть элементы вставных декад больших периодов, расположенные между s- и р-элементами. Их также называют переходными элементами;

4) f-элементы, заполняется электронами f-подуровень третьего снаружи уровня атома; к ним относятся лантаноиды и актиноиды.

1. Что было бы, если бы принцип Паули не соблюдался?

2. Что было бы, если бы правило Хунда не соблюдалось?

3. Составьте схемы электронного строения, электронные формулы и графические электронные формулы атомов следующих химических элементов: Са, Fе, Zr, Sn, Nb, Hf, Ра.

4. Напишите электронную формулу элемента № 110, используя символ соответствующего благородного газа.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Электронная конфигурация элемента это запись распределения электронов в его атомах по оболочкам, подоболочкам и орбиталям. Электронная конфигурация обычно записывается для атомов в их основном состоянии. Электронная конфигурация атома, у которого один или несколько электронов находятся в возбужденном состоянии, называется возбужденной конфигурацией. Для определения конкретной электронной конфигурации элемента в основном состоянии существуют следующие три правила: Правило 1: принцип заполнения. Согласно принципу заполнения, электроны в основном состоянии атома заполняют орбитали в последовательности повышения орбитальных энергетических уровней. Низшие по энергии орбитали всегда заполняются первыми.

Водород; атомный номер = 1; число электронов = 1

Этот единственный в атоме водорода электрон должен занимать s-орбиталь К-обо-лочки, поскольку из всех возможных орбиталей она имеет самую низкую энергию (см. рис. 1.21). Электрон на этой s-орбитали называется ls-электрон. Водород в основном состоянии имеет электронную конфигурацию Is1.

Правило 2: принцип запрета Паули . Согласно этому принципу, на любой орбитали может находиться не более двух электронов и то лишь в том случае, если они имеют противоположные спины (неодинаковые спиновые числа).

Литий; атомный номер = 3; число электронов = 3

Орбиталь с самой низкой энергией-это 1s-орбиталъ. Она может принять на себя только два электрона. У этих электронов должны быть неодинаковые спины. Если обозначать спин +1/2 стрелкой, направленной вверх, а спин -1/2 стрелкой, направленной вниз, то два электрона с противоположными (антипараллельными) спинами на одной орбитали схематически можно представить записью (рис. 1.27)

На одной орбитали не могут находиться два электрона с одинаковыми (параллельными) спинами:

Третий электрон в атоме лития должен занимать орбиталь, следующую по энергии за самой низкой орбиталью, т.е. 2в-орбиталь. Таким образом, литий имеет электронную конфигурацию Is22s1.

Правило 3: правило Гунда . Согласно этому правилу, заполнение орбиталей одной подоболочки начинается одиночными электронами с параллельными (одинаковыми по знаку) спинами, и лишь после того, как одиночные электроны займут все орбитали, может происходить окончательное заполнение орбиталей парами электронов с противоположными спинами.

Азот; атомный номер = 7; число электронов = 7 Азот имеет электронную конфигурацию ls22s22p3. Три электрона, находящиеся на 2р-подоболочке, должны располагаться поодиночке на каждой из трех 2р-орбиталей. При этом все три электрона должны иметь параллельные спины (рис. 1.22).

В табл. 1.6 показаны электронные конфигурации элементов с атомными номерами от 1 до 20.

Таблица 1.6. Электронные конфигурации основного состояния для элементов с атомным номером от 1 до 20