Расположение подкоркового центра слуха. А- подкорковые центры слуха

(Слуховая сенсорная система)

Вопросы лекции:

1. Структурно-функциональная характеристика слухового анализатора:

a. Наружное ухо

b. Среднее ухо

c. Внутреннее ухо

2. Отделы слухового анализатора: периферический, проводниковый, корковый.

3. Восприятие высоты, силы звука и локализации источника звука:

a. Основные электрические явления в улитке

b. Восприятие звуков различной высоты

c. Восприятие звуков различной интенсивности

d. Определение источника звука (бинауральный слух)

e. Слуховая адаптация

1. Слуховая сенсорная система – второй по значению дистантный анализатор человека, играет важную роль именно у человека в связи с возникновением членораздельной речи.

Функция слухового анализатора: превращение звуковых волн в энергию нервного возбуждения и слуховое ощущение.

Как любой анализатор, слуховой анализатор состоит из периферического, проводникового и коркового отдела.

ПЕРИФЕРИЧЕСКИЙ ОТДЕЛ

Превращает энергию звуковых волн в энергию нервного возбуждения – рецепторный потенциал (РП). Этот отдел включает:

· внутреннее ухо (звуковоспринимающий аппарат);

· среднее ухо (звукопроводящий аппарат);

· наружное ухо (звукоулавливающий аппарат).

Составляющие этого отдела объединяются в понятие орган слуха .

Функции отделов органа слуха

Наружное ухо :

a) звукоулавливающая (ушная раковина) и направляющая звуковую волну в наружный слуховой проход;

b) проведение звуковой волны через слуховой проход к барабанной перепонке;

c) механическая защита и защита от температурных воздействий окружающей среды всех остальных отделов органа слуха.

Среднее ухо (звукопроводящий отдел) – это барабанная полость с 3-мя слуховыми косточками: молоточек, наковальня и стремечко.

Барабанная перепонка отделяет наружный слуховой проход от барабанной полости. Рукоятка молоточка вплетена в барабанную перепонку, другой его конец сочленен с наковальней, которая, в свою очередь, сочленена со стремечком. Стремечко прилегает к мембране овального окна. В барабанной полости поддерживается давление, равное атмосферному, что очень важно для адекватного восприятия звуков. Эту функцию выполняет евстахиева труба, которая соединяет полость среднего уха с глоткой. При глотании труба открывается, в результате чего происходит вентиляция барабанной полости и уравнивание давления в ней с атмосферным. Если внешнее давление быстро изменяется (быстрый подъем на высоту), а глотания не происходит, то разность давлений между атмосферным воздухом и воздухом в барабанной полости приводит к натяжению барабанной перепонки и возникновению неприятных ощущений («закладывание ушей»), снижению восприятия звуков.

Площадь барабанной перепонки (70 мм 2) значительно больше площади овального окна (3,2 мм 2), благодаря чему происходит усиление давления звуковых волн на мембрану овального окна в 25 раз. Рычажный механизм косточек уменьшает амплитуду звуковых волн в 2 раза, поэтому происходит такое же усиление звуковых волн на овальном окне барабанной полости. Следовательно, среднее ухо усиливает звук примерно в 60-70 раз, а если учитывать усиливающий эффект наружного уха, то эта величина возрастает в 180-200 раз. В связи с этим, при сильных звуковых колебаниях для предотвращения разрушительного действия звука на рецепторный аппарат внутреннего уха, среднее ухо рефлекторно включает «защитный механизм». Он состоит в следующем: в среднем ухе есть 2 мышцы, одна из них натягивает барабанную перепонку, другая – фиксирует стремечко. При сильных звуковых воздействиях эти мышцы при их сокращении ограничивают амплитуду колебаний барабанной перепонки и фиксируют стремечко. Это «гасит» звуковую волну и предохраняет чрезмерное возбуждение и разрушение фонорецепторов кортиевого органа.

Внутреннее ухо : представлено улиткой – спирально закрученным костным каналом (2,5 завитка у человека). Этот канал разделен по всей его длине на три узкие части (лестницы) двумя мембранами: основной мембраной и вестибулярной мембраной (Рейснера).

На основной мембране расположен спиральный орган – орган корти (кортиев орган) – это собственно звуковоспринимающий аппарат с рецепторными клетками – это и есть периферический отдел слухового анализатора.

Геликотрема (отверстие) соединяет верхний и нижний канал на вершине улитки. Средний канал является обособленным.

Над кортиевым органом расположена текториальная мембрана, один конец которой закреплен, а другой остается свободным. Волоски наружных и внутренних волосковых клеток кортиевого органа соприкасаются с текториальной мембраной, что сопровождается их возбуждением, т.е. энергия звуковых колебаний трансформируется в энергию процесса возбуждения.

Строение кортиевого органа

Процесс трансформации начинается с попадания звуковых волн в наружное ухо; они приводят в движение барабанную перепонку. Колебания барабанной перепонки через систему слуховых косточек среднего уха передаются на мембрану овального окна, что вызывает колебания перилимфы вестибулярной лестницы. Эти колебания через геликотрему передаются на перилимфу барабанной лестницы и достигают круглого окна, выпячивая его в сторону среднего уха (это не дает затухнуть звуковой волне при прохождении по вестибулярному и барабанному каналу улитки). Колебания перилимфы передаются на эндолимфу, что вызывает колебания основной мембраны. Волокна основной мембраны приходят в колебательные движения вместе с рецепторными клетками (наружными и внутренними волосковыми клетками) кортиевого органа. При этом волоски фонорецепторов контактируют с текториальной мембраной. Реснички волосковых клеток деформируются, это вызывает формирование рецепторного потенциала, а на его основе – потенциала действия (нервный импульс), который проводится по слуховому нерву и передается в следующий отдел слухового анализатора.

ПРОВОДНИКОВЫЙ ОТДЕЛ СЛУХОВОГО АНАЛИЗАТОРА

Проводниковый отдел слухового анализатора представлен слуховым нервом . Он образован аксонами нейронов спирального ганглия (1-й нейрон проводящего пути). Дендриты этих нейронов иннервируют волосковые клетки кортиевого органа (афферентное звено), аксоны образуют волокна слухового нерва. Волокна слухового нерва заканчиваются на нейронах ядер кохлеарного тела (VIII пара ч.м.н.) (второй нейрон). Затем, после частичного перекреста, волокна слухового пути идут в медиальные коленчатые тела таламуса, где опять происходит переключение (третий нейрон). Отсюда возбуждение поступает в кору (височная доля, верхняя височная извилина, поперечные извилины Гешля) – это проекционная слуховая зона коры.

КОРКОВЫЙ ОТДЕЛ СЛУХОВОГО АНАЛИЗАТОРА

Представлен в височной доле коры больших полушарий – верхняя височная извилина, поперечные височные извилины Гешля . С этой проекционной зоны коры связаны корковые гностические слуховые зоны – зона сенсорной речи Вернике и праксическая зона – моторный центр речи Брока (нижняя лобная извилина). Содружественная деятельность трех зон коры обеспечивает развитие и функцию речи.

Слуховая сенсорная система имеет обратные связи, которые обеспечивают регуляцию деятельности всех уровней слухового анализатора с участием нисходящих путей, которые начинаются от нейронов «слуховой» коры и последовательно переключаются в медиальных коленчатых телах таламуса, нижних буграх четверохолмия среднего мозга с формированием тектоспинальных нисходящих путей и на ядрах кохлеарного тела продолговатого мозга с формированием вестибулоспинальных путей. Это обеспечивает в ответ на действие звукового раздражителя формирование двигательной реакции: поворота головы и глаз (а у животных – ушных раковин) в сторону раздражителя, а также повышение тонуса мышц-флексоров (сгибание конечностей в суставах, т.е. готовность к прыжку или бегу).

Слуховая кора

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЗВУКОВЫХ ВОЛН, КОТОРЫЕ ВОСПРИНИМАЮТСЯ ОРГАНОМ СЛУХА

1. Первой характеристикой звуковых волн является их частота и амплитуда.

Частота звуковых волн определяет высоту звука!

Человек различает звуковые волны с частотой от 16 до 20 000 Гц (это соответствует 10-11 октавам). Звуки, частота которых ниже 20 Гц (инфразвуки) и выше 20 000 Гц (ультразвуки) человеком не ощущаются!

Звук, который состоит из синусоидальных или гармонических колебаний, называют тоном (большая частота – высокий тон, малая частота – низкий тон). Звук, состоящий из не связанных между собой частот, называют шумом .

2. Второй характеристикой звука, которую различает слуховая сенсорная система, является его сила или интенсивность.

Сила звука (его интенсивность) совместно с частотой (тоном звука) воспринимается как громкость. Единица измерения громкости – бел = lg I/I 0 , однако в практике чаще используют децибел (dB) (0,1 бела). Децибел – это 0,1 десятичного логарифма отношения интенсивности звука к пороговой его интенсивности: dB = 0,1 lg I/I 0 . Максимальный уровень громкости, когда звук вызывает болевые ощущения, равен 130-140 дБ.

Чувствительность слухового анализатора определяется минимальной силой звука, вызывающей слуховые ощущения.

В области звуковых колебаний от 1000 до 3000 Гц, что соответствует человеческой речи, ухо обладает наибольшей чувствительностью. Эта совокупность частот называется речевой зоной (1000-3000 Гц). Абсолютная звуковая чувствительность в этом диапазоне равна 1*10 -12 вт/м 2 . При звуках выше 20 000 Гц и ниже 20 Гц абсолютная слуховая чувствительность резко снижается – 1*10 -3 вт/м 2 . В речевом диапазоне воспринимаются звуки, имеющие давление меньше 1/1000 бара (бар равен 1/1 000 000 части нормального атмосферного давления). Исходя из этого, в передающих устройствах, чтобы обеспечить адекватное понимание речи, информация должна передаваться в речевом диапазоне частот.

МЕХАНИЗМ ВОСПРИЯТИЯ ВЫСОТЫ (ЧАСТОТЫ), ИНТЕНСИВНОСТИ (СИЛЫ) И ЛОКАЛИЗАЦИИ ИСТОЧНИКА ЗВУКА (БИНАУРАЛЬНЫЙ СЛУХ)

Восприятие частоты звуковых волн

В латеральных коленчатых телах , являющихся подкорковыми зрительными центрами, заканчивается основная масса аксонов ганглиозных клеток сетчаток и происходит переключение нервных импульсов на следующие зрительные нейроны, именуемые подкорковыми, или центральными. В каждый из подкорковых зрительных центров поступают нервные импульсы, идущие из гомолатеральных половин сетчаток обоих глаз. Кроме того, в латеральные коленчатые тела информация поступает также из зрительной коры (обратная связь). Предполагается и наличие ассоциативных связей между подкорковыми зрительными центрами и ретикулярной формацией ствола мозга, способствующей стимуляции внимания и общей активности (arousal).

Латеральное коленчатое тело состоит из шести слоев . Каждый из них имеет несколько (обычно шесть) пластов нервных клеток. Установлено, что в шести-слойном подкорковом зрительном центре расположение нейронов сохраняет определенную упорядоченность и свойственные сетчатке топографо-анатомические соотношения. Чередующиеся слои латерального коленчатого тела получают зрительные импульсы только от гомолатеральных (правых или левых), соответствующих стороне расположения коленчатого тела половин сетчатки то одного, то другого глаза. В чередовании слоев нет абсолютной последовательности.

Так, в левом коленчатом теле проекции правых половин сетчаток располагаются в следующем порядке (от поверхностного слоя к глубинному): левый глаз, правый, левый, правый, правый, левый. Объяснения неполной последовательности чередования проекций гомогенных половин сетчаток правого и левого глаз пока нет. Перечисленные проекции половин сетчаток в слоях латерального коленчатого тела располагаются в точности одна под другой.

В эксперименте было доказано, что клетки наружного коленчатого тела отвечают на достигающие их зрительные импульсы приблизительно так же, как ганглиозные клетки сетчатки реагируют на зрительные импульсы, поступающие к ним от фоторецепторов. При этом центральные зрительные нейроны коленчатых тел и соответствующие им ганглиозные клетки сетчатки, которые можно называть периферическими зрительными нейронами, имеют сходную структуру рецептивных полей с on- и off-центрами зрительных нейронов и дают сходные биоэлектрические ответы, зависящие от интенсивности и цвета световых импульсов.

Установлено также, что соседние ганглиозные клетки сетчатки и центральные зрительные нейроны подкоркового зрительного центра расположены между собой н идентичной последовательности.
Предполагают, что некоторые нейроны латерального коленчатого тела имеют короткие аксоны, обеспечивающие местные межнейронные синаптические связи, что позволяет предполагать их взаимодействие, ведущее к возможному предварительному анализу и синтезу поступающей в подкорковые центры зрительной информации. Вместе с тем о роли наружных коленчатых тел в обработке зрительной информации в настоящее время нет единого мнения. Д. Хьюбел в 1990 г. высказывал предположение, что в ней, по-видимому, не происходит никаких значительных преобразований поступающих из сетчатки зрительных импульсов. Вместе с тем Дж. Г. Николе, А.Р. Мартин, Б.Дж. Валлас и П.А. Фукс (2003) признают, что нейроны коленчатых тел участвуют «в обеспечении первых шагов анализа зрительных сцен: определение линий и форм на основе поступающего из сетчатки сигнала...»

Аксоны нейронов латерального коленчатого тела, выходящие из шести слоев латерального коленчатого тела объединяются в единый пучок и участвуют в формировании задней ножки внутренней капсулы, а затем образуют имеющую значительную протяженность следующую часть зрительных путей - зрительную лучистость.

Зрительная лучистость

Аксоны зрительных нейронов, расположенных в латеральном коленчатом теле, входят в состав белого вещества больших полушарий. При этом сначала они образуют компактный пучок, участвующий в формировании задней ножки внутренней капсулы, точнее ее подчечевидной части (pars sublenticularis), а в дальнейшем формируют зрительную лучистость (radiatio optici), или пучки Грациоле . После прохождения так называемого перешейка височной доли мозга зрительная лучистость расширяется и приобретает форму широкой ленты. Такая особенность организации этой части зрительной лучистости приводит к тому, что повреждение ее нередко оказывается частичным, ввиду ее значительной ширины и некомпактности расположения входящих в ее состав нервных волокон. В связи с этим поражение зрительной лучистости тотальным бывает лишь при достаточно распространенном патологическом процессе.

Нервные волокна, входящие в состав зрительной лучистости, участвуют в формировании белого вещества височной, теменной и затылочной долей. В височной доле вблизи наружной стенки нижнего рога бокового желудочка большинство волокон нижней части зрительной лучистости сначала проходят вперед к полюсу височной доли. Затем эти волокна, формируя петлю Мейера , поворачиваются назад и проходят в составе белого вещества височной и затылочной долей.

В итоге они достигают коры язычной извилины (gyrus linqualis), образующей нижнюю "губу" шпорной борозды (sulcus calcarinus), расположенной на медиальной поверхности затылочной доли.

Верхняя часть зрительной лучистости прямее и потому короче нижней. Она проходит в составе белого вещества теменной и затылочной долей полушария и заканчивается, вступая в контакт с корковыми клетками, расположенными в верхней губе шпорной борозды, формируемой извилиной, известной под названием клин (cuneus). Кора медиальной поверхности затылочной доли, окружающая шпорную борозду и распространяющаяся в ее глубину, составляет первичное проекционное зрительное поле , занимающее цитоархитектоническое поле 17, по Бродманну.

Следует напомнить, что зрительные пути на всем их протяжении проводят зрительные импульсы, располагаясь в строгом ретинотопическом порядке и сохраняя при этом свойственные сетчатке топографо-анатомические соотношения.

Над промежуточным мозгом расположены подкорковые центры. Из них наибольшее значение имеют полосатые тела, которые состоят из двух ядер: хвостатого и чечевицеобразного. Хвостатое ядро примыкает к зрительным буграм. От чечевицеобразного ядра его отделяет пучок белых нервных волокон - внутренняя капсула. Чечевицеобразное ядро делится на наружную часть - скорлупу и внутреннюю - бледный шар.


Бледный шар -- главный двигательный центр промежуточного мозга. Его возбуждение вызывает сильные сокращения мышц шеи, рук, туловища и ног, главным образом на противоположной стороне. Перевозбуждение бледного шара вызывает навязчивые движения рук, главным образом пальцев, - атетозы и всего тела - хорею. Хорея, или непроизвольный танец, бывает у детей от 6 до 15 лет. Бледный шар по центробежным волокнам тормозит красное ядро, подавляя контрактильный тонус. Поэтому выключение бледного шара приводит в общей скованности, резкому повышению тонуса мышц, маскообразному лицу, тихой монотонной речи. Бледный шар уточняет координацию движений, участвуя в выполнении добавочных движений, способствующих выполнению основных, например, в фиксировании суставов, качании рук при ходьбе и т. п., и координирует двигательные рефлексы с вегетативными функциями.

Хвостатое ядро и скорлупа чечевицеобразного ядра по центробежным волокнам тормозят бледный шар и прекращают перепроизводство движений (гиперкинез), вызванное его возбуждением. Поэтому их поражение вызывает гиперкинез, атетоз и хорею. В хвостатое ядро и скорлупу чечевицеобразного ядра поступают центростремительные волокна из зрительных бугров и мозжечка, что обеспечивает их участие в функциях этих отделов нервной системы.

Двигательные ядра полосатого тела, зрительных бугров, промежуточного мозга и гипоталамической области и красное ядро входят в состав экстра-пирамидной системы, которая, при ведущей роли пирамидной системы, участвует в выполнении сложнейших врожденных двигательных актов, связанных с деятельностью внутренних органов (пищевые, половые рефлексы и др.) и в изменениях положения и передвижении тела (трудовые и спортивные движения, ходьба, бег и т. п.). В каждом полушарии с перечисленными образованиями мозгового ствола тесно связана лимбическая, или краевая, доля больших полушарий, которая как поясная извилина опоясывает мозолистое тело спереди и огибает сзади, переходя в извилину морского коня (гиппокамп). Вместе со сводом и миндалевидным ядром лимбическая доля составляет лимбическую систему.

Лимбическая система связана с ретикулярной формацией мозгового ствола и вызывает изменения функций организма, характерные для эмоций, ведущая роль в осуществлении которых принадлежит лобным долям.

Проводящие пути зрительного анализатора разделяются на периферические и центральные. Периферические пути начинаются в сетчатке глаза. Первый нейрон образован нейроэпителием (палочки и колбочки), второй нейрон - биполярными клетками ганглия сетчатки, третий нейрон - муль-типолярными клетками ганглия зрительного нерва. Их нейриты формируют зрительный нерв.

После зрительного перекреста - chiasma opticum - зрительные нервы обоих глаз переходят в зрительные тракты - tractus opticus, в составе которых имеются прямые проводящие пути из латеральных отделов сетчаток глазных яблок и перекрещенные пути из медиальных отделов сетчаток. Таким образом, каждый зрительный тракт содержит волокна из обоих глаз. Этим достигается лучшее качество зрения (стереоскопичность). Волокна зрительных трактов заканчиваются в трех первичных (подкорковых) зрительных центрах; а) в латеральных коленчатых телах; б) в каудальных

ядрах зрительных бугров - p"ulvyiar thalamis - и в) в назальных холмах четверохолмия.

Из перечисленных первичных центров происходят четвертые нейроны, образующие центральные проводящие пути зрительного анализатора (рис. 290). Из латерального коленчатого тела (и из каудальных ядер зрительных бугров) четвертые нейроны передают импульсы в корковые зрительные центры затылочной доли коры полушарий. Из назальных холмов четверохолмия четвертые нейроны формируют tractus tectospinalis, по которому импульсы передаются: а)

Рис. 290. Проводящие пути зрительного анализатора (по А^егбев): 1 --поле зрения; 2 - хрусталик; 3 - сетчатка; 4 - зрительный нерв; 5 - перекрест зрительных нервов; 6 - зрительный тракт; 7 - каудальное ядро зрительного бугра; 8 - латеральное коленчатое тело; 9 - ростральные холмы четверохолмия; 10 - центральный зрительный путь;И - кора затылочной доли плаща.

на моторные клетки вентральных столбов шейногрудной части спинного мозга (эти клетки представляют собой нейроны, через которые осуществляются рефлекторные движения головы и шеи) и б) на клетки ядер третьего, четвертого и шестого двигательных нервов глазных мышц. Назальными холмами четверохолмия при участии нейронов, заложенных в парасимпатическом ядре Якубовича (Эдингера - Вестфаля) и в ресничном узле, управляются также рефлекторные сокращения сфинктера зрачка и ресничного тела.

СТАТОАКУСТИЧЕСКИЙ АНАЛИЗАТОР

Статоакустический анализатор, или равновесный и слуховой анали* заторы, состоит из: 1) рецепторного аппарата, представленного преддверно-улитковым органом; 2) проводящих путей и 3) подкорковых и корковых центров.

Развитие статоакустического анализатора. Чувство равновесия обусловлено действием сил тяжести. В состав органа равновесия (статического органа) входят специализированные чувствительные клетки, снабженные упругими волосками, и известковые кристаллики - статолиты, которые давят на чувствительные волоски и раздражают чувствительные клетки. Статические органы лишь иногда располагаются на поверхности тела в виде ямок (рис. 291, 292-/3"), представляющих собой пузырьки- статоцис-ты; на их стенках размещены чувствительные клетки, а статолиты находятся в полости статоциста. При изменении положения тела статолиты раздражают различные группы клеток.

У хордовых, За исключением ланцетника, существуют парные стато-

I Ж Ж

Рис. 291. Схема развития головного мозга и рецепторов анализаторов (по А. Н. Север-

цову):

/, //, 111 - последовательные стадии развития; / - головной мозг; 2 - глазки Гессе в спинном мозге; 3 - первичные чувствительные клетки с их эфферентными отростками; 4 - двигательные нервы; 5 - непарная обонятельная плакода; 5" - первые обонятельные ямки; 6 - обонятельный нерв; 7 - передний мозг; Т - обонятельный мозг; 7" - промежуточный мозг; 8 - глазной пузырь с глазками Гессе; 8" - глазной бокал с чувствительными клетками и наружным пигментным слоем; 9 - прозрачная часть кожи; 9" - роговица; 10 - склера; 11 - хрусталик; 12 - зрительный нерв; 13 - чувствительные клетки органа боковой линяй;13" - слуховая ямка; 13"- слуховая плакода; 13"" - слуховой пузырек (статоцист); 14 - афферентные отростки чувствительных клеток; 14" - слуховой нерв; 15 - скелетная капсула; 16 - средний

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Выполнила Л.Г.Дурманова МЕХАНИЗМ ЗВУКОВОСПРИЯТИЯ, ПОДКОРКОВЫЕ И КОРКОВЫЕ ЦЕНТРЫ СЛУХА

2 слайд

Описание слайда:

Человек стал Homo sapiens благодаря своей способности говорить. Хотя слух по значимости занимает второе место после зрения, но без него появление речи было бы невозможно. Выделить из колебаний воздуха только значимые и преобразовать их в понятные звуки и слова может только человеческий слуховой анализатор с его сложнейшим устройством.

3 слайд

Описание слайда:

Ушная раковина, которую в быту мы называем просто ухо, играет роль своеобразного локатора. Однако преувеличивать ее значение не стоит. Если для некоторых животных эта функция ушной раковины еще важна (не зря они прядут ушами, улавливая источник звука), то человек вполне обходится без нее (попробуйте ушами пошевелить – мало у кого это получится). Наружный слуховой проход не только место для образования серы, по нему звук достигает барабанной перепонки, за которой скрыто самое интересное – среднее и внутреннее ухо.

4 слайд

Описание слайда:

Слуховой анализатор человека состоит их четырех частей: Наружное ухо К наружному уху относятся ушная раковина, слуховой проход и барабанная перепонка, которая закрывает внутренний конец слухового прохода. Слуховой проход имеет неправильную изогнутую форму. У взрослого человека длина его составляет около 2,5 см, а диаметр около 8 мм. Поверхность слухового прохода покрыта волосками и содержит железы, выделяющие ушную серу, которая необходима для поддержания влажности кожи. Слуховой проход обеспечивает также постоянную температуру и влажность барабанной перепонки.

5 слайд

Описание слайда:

Наружное ухо Ушная раковина, которая помогает нам определить, откуда исходит звук. Слуховой проход (место, где может скапливаться ушная сера), который служит в качестве звукового канала.

6 слайд

Описание слайда:

Среднее ухо Среднее ухо – это заполненная воздухом полость за барабанной перепонкой. Эта полость соединяется с носоглоткой посредством евстахиевой трубы – узкого хрящевого канала, который обычно находится в закрытом состоянии. Глотательные движения открывают евстахиеву трубу, что обеспечивает поступление воздуха в полость и выравнивание давления по обе стороны барабанной перепонки для ее оптимальной подвижности. В полости среднего уха находятся три миниатюрные слуховые косточки: молоточек, наковальня и стремя. Одним концом молоточек соединен с барабанной перепонкой, другой его конец связан с наковальней, которая, в свою очередь соединена со стременем, а стремя с улиткой внутреннего уха. Барабанная перепонка постоянно колеблется под действием улавливаемых ухом звуков, а слуховые косточки передают ее колебания во внутреннее ухо.

7 слайд

Описание слайда:

Барабанная перепонка, которая туго натянута, подобно коже настоящего барабана, и превращает звуковые колебания в вибрации. Цепочка из трех маленьких косточек, которые называются молоточек, наковальня и стремечко и проводят вибрации во внутреннее ухо. СРЕДНЕЕ УХО

8 слайд

Описание слайда:

Внутреннее ухо Во внутреннем ухе содержится несколько структур, но к слуху отношение имеет только улитка, получившая свое название из-за спиральной формы. Улитка разделена на три канала, заполненные лимфатическими жидкостями. Жидкость в среднем канале отличается по составу от жидкости в двух других каналах. Орган, непосредственно ответственный за слух (Кортиев орган), находится в среднем канале. Кортиев орган содержит около 30000 волосковых клеток, которые улавливают колебания жидкости в канале, вызванные движением стремени, и генерируют электрические импульсы, которые по слуховому нерву передаются к слуховой зоне коры головного мозга. Каждая волосковая клетка реагирует на определенную звуковую частоту, причем высокие частоты улавливаются клетками нижней части улитки, а клетки, настроенные на низкие частоты, располагаются в верхней части улитки. Если волосковые клетки по каким-либо причинам гибнут, человек перестает воспринимать звуки соответствующих частот.

9 слайд

Описание слайда:

Внутреннее ухо Улитка, которая свернута спиралью наподобие настоящей улитки и наполнена жидкостью. Она содержит очень чувствительные клетки, которые называются волосковыми клетками, потому что на конце каждой клетки имеется крошечное образование, похожее на волосок. Волосковые клетки, колеблясь, вырабатывают электрические импульсы которые по слуховому нерву поступают в головной мозг который и распознает их как звуки.

10 слайд

Описание слайда:

11 слайд

Описание слайда:

Слуховые проводящие пути Слуховые проводящие пути – это совокупность нервных волокон, проводящих нервные импульсы от улитки к слуховым центрам коры головного мозга, в результате чего возникает слуховое ощущение. Слуховые центры расположены в височных долях головного мозга. Время, потраченное на прохождение слухового сигнала от внешнего уха к слуховым центрам мозга, составляет около 10 миллисекунд. улитка

12 слайд

Описание слайда:

С окружающим миром барабанная полость сообщается посредством слуховой (евстахиевой) трубы, которая открывается в носоглотке. Она необходима для вентиляции барабанной полости и поддержания в ней давления, одинакового с внешним. Поэтому становится ясно, почему заболевания носоглотки могут осложняться средним отитом. Трансформация механических (звуковых) колебаний в электрический сигнал, который дойдет до отделов мозга, происходит во внутреннем ухе. Воспринимающие звук волосковые клетки располагаются в улитке, которая представляет собой тонкий конус, закрученный в спираль канал из 2,5 витка. У каждой рецепторной клетки (а их количество может достигать до 25 000) на свободном конце имеются от 30-40 до 100-120 микроворсинок-волосков. Деформация волосков приводит к генерации электрических импульсов, а затем к возбуждению волокон слухового нерва, которые передают его в анализаторы головного мозга. При этом разные группы волосковых клеток «настроены» на звуки различной частоты. Высокочастотный звук улавливается клетками, расположенными внизу улитки, низкие частоты регистрируются клетками, находящимися в ее верхней части. Определенную избирательность обнаруживают и нервные элементы слухового анализатора. Таким образом, результат слаженной работы всех его отделов, чисто физический феномен – колебания воздуха, становится основой для деятельности одного из наших органов чувств

13 слайд

Описание слайда:

14 слайд

Описание слайда:

Восприятие звука Ухо последовательно преобразует звуки в механические колебания барабанной перепонки и слуховых косточек, затем в колебания жидкости в улитке и, наконец, в электрические импульсы, которые по проводящим путям центральной слуховой системы передаются в височные доли мозга для распознавания и обработки. Мозг и промежуточные узлы слуховых проводящих путей извлекают не только информацию о высоте и громкости звука, но и другие характеристики звука, например, интервал времени между моментами улавливания звука правым и левым ухом – на этом основана способность человека определять направление, по которому приходит звук. При этом мозг оценивает как информацию, полученную от каждого уха в отдельности, так и объединяет всю полученную информацию в единое ощущение. В нашем мозгу хранятся «шаблоны» окружающих нас звуков – знакомых голосов, музыки, опасных звуков и т.д. При снижении слуха мозг начинает получать искаженную информацию (звуки становятся более тихими), что приводит к ошибкам в интерпретации звуков. Для того чтобы правильно слышать и понимать звуки, необходима согласованная работа слухового анализатора и мозга. Таким образом, без преувеличения можно сказать, что человек слышит не ушами, а мозгом!

15 слайд

Описание слайда:

16 слайд

Описание слайда:

Проводящий путь слухового анализатора. Слуховой нервный импульс --- нервные клетки улитки (их аксоны образуют слуховой нерв)---волокна улиткового нерва –мозг (ядра, расположенные в мосту) ---подкорковые слуховые центры (воспринимаются импульсы подсознательно) ---корковый центр слухового анализатора. Слуховая кора осуществляет обработку информации: анализ звуковых сигналов, дифференцировку звуков. В коре формируются комплексные представления о звуковых сигналах, поступающих в оба уха раздельно, а также она отвечает за пространственную локализацию звуковых сигналов. Нервные импульсы, поступающие по проводящему пути слухового анализатора передаются на покрышечно-спинномозговой путь к передним рогам спинного мозга, а через них к скелетным мышцам. При участии покрышечно –спинномозгового пути замыкается сложная рефлекторная дуга, по которой импульсы вызывают сокращение скелетных мышц в ответ на те или иные звуковые сигналы (сторожевой, оборонительный рефлексы).

17 слайд

Описание слайда:

Путь слухового анализатора состоит из трех нейронов Первые нейроны - это биполярные клетки, находящиеся в спиральном узле улитки.Дендриты этих нейронов идут от волосковых слуховых клеток спирального (кортиева) органа, воспринимающих колебания эндолимфы и превращающих их в нервные импульсы. Аксоны биполярных клеток формируют улитковый нерв, который вместе с преддверным и лицевым нервами через внутренний слуховой проход входит в полость черепа и в мостомозжечковом углу заходит в верхние отделы продолговатого мозга и нижние отделы моста. В стволе мозга улитковый нерв отделяется от преддверного и заканчивается в вентральном и дорсальном слуховых ядрах, где расположены вторые нейроны слухового анализатора. От этих ядер слуховые волокна, к которым присоединяются проводники от дополнительных образований серого вещества (верхней оливы, ядра трапециевидного тела), частично перейдя на противоположную сторону, частично на своей стороне поднимаются в стволе мозга вверх, формируя боковую петлю.Боковая петля, состоящая из перекрещенных и неперекрещенных волокон, поднимается вверх и заканчивается в подкорковых слуховых центрах внутреннем коленчатом теле и нижнем бугорке пластинки крыши среднего мозга. Третий нейрон начинается от внутреннего коленчатого тела, проходит через внутреннюю капсулу и лучистый венец к корковому отделу слухового анализатора, расположенному в извилине Гешля в области заднего отдела верхней височной извилины. Волокна, которые заканчиваются в нижнем бугорке пластинки крыши, имеют связь с подкорковыми двигательными центрами и играют важную роль в пространственной локализации источника звука и обеспечении двигательных реакций на слуховые раздражители.19 слайд

Описание слайда:

Патология слухового анализатора. Различают такие расстройства слуха: полная потеря слуха, глухота (anacusis), снижение слуха (hypacusis), повышение восприятия (hyperacusis). Раздражение патологическим процессом нейрорецепторного слухового аппарата во внутреннем ухе или улиткового нерва сопровождается шумом, свистом, звоном в ухе, голове. Одностороннее снижение или отсутствие слуха возможно лишь при патологии лабиринта внутреннего уха, улиткового нерва или его ядер (в неврологической практике чаще при нейропатии улиткового нерва или его невриноме в мостомозжечковом углу). Одностороннее поражение боковой петли, подкоркового слухового центра или коркового отдела слухового анализатора ощутимых расстройств слуха не вызывает из-за того, что ядра улиткового нерва имеют двустороннюю связь с корковыми слуховыми центрами. В таких случаях может отмечаться лишь некоторое снижение слуха с обеих сторон. Если патологический процесс раздражает корковый отдел слухового анализатора, возникают слуховые галлюцинации, которые иногда могут быть аурой генерализованного судорожного эпилептического приступа.

20 слайд

Описание слайда:

Ослабленный, а тем более полностью потерянный слух - тяжёлый недуг, и учёные давно работают над тем, чтобы облегчить страдания людей с недостатками слуха. В тех случаях, когда нельзя путём лечения возвратить слух, пытаются достичь этого путём усиления звуковой волны. С этой целью применяются усиливающие приборы-протезы. Раньше ограничивались употреблением специальных рупоров, воронок, рогов и разговорных трубок. Теперь нередко применяются электрические усилители. Часто эти приборы бывают настолько малых размеров, что они помещаются в самом ухе, перед барабанной перепонкой.

21 слайд

Описание слайда:

5.2009-2013 LIKEBOOK.RU Электронная библиотека 6.Copyright © 2011-2013 Неврология. Онлайн-энциклопедия nevro-enc.ru 3. www.rostmaster.ru 4.tolkslovar.ru›s15462.html 1.anypsy.ru›Словарь›slukhovoi-analizator 2.BronnikovMethod.ru›tormozyashchee-deystvie-kory…0… ИНТЕРНЕТРЕСУРСЫ ЛИТЕРАТУРА 1.Иванов В.А., Яковлева Е.А. Анатомо-физиологические основы аурикулотерапии. – Курск, 2006 2.Иванов В.А. Анатомия, физиология, патология органов слуха, речи и зрения: Учебное сетевое электронное издание (IMS Content Package)/ В.А.Иванов –Курск: Курск.гос. ун-т, 2010