Многозначные числа. Конспект урка по математике «Вычитание многозначных чисел»

Литература: Б.Б. с.132-134

При изучении темы «Сложение и вычитание многозначных чисел» основными задачами учителя являются:

· обобщить и систематизировать знания учащихся о действиях сложения и вычитания,

· выработать осознанные и прочные навыки письменных вычислений.

Сложение и вычитание многозначных чисел изучаются одновременно. Это создаёт лучшие условия для овладения знаниями, умениями и навыками, так как вопросы теории этих действий взаимосвязаны, а приёмы вычислений сходны.

С арифметическими действиями сложения, вычитания, а также с некоторыми устными и письменными приемами их выполнения в концентре «Тысяча», учащиеся уже хорошо знакомы. Поэтому при изучении темы «Сложение и вычитание многозначных чисел» целесообразно активно опираться на знания детей, увеличив объём и усилив самостоятельное выполнение заданий.

Подготовительную работу к изучению темы начинают ещё при изучении нумерации многозначных чисел. С этой целью, прежде всего, повторяют устные приёмы сложения и вычитания и свойства действий, на которые они опираются, например: 8400+600, 9800-700, 2000-1700, 740 000+160 000 т.п. Повторяют также письменные приёмы сложения и вычитания трёхзначных чисел. Полезно в устные упражнения на сложение и вычитание разрядных чисел включить примеры с пояснением вида:

6 сот.+8 сот.=14 сот.=1 тыс. 4 сот.;

1 сот. тыс. 5 дес. тыс. – 7 дес. тыс.=15 дес. тыс. -7 дес. тыс.= 8 дес. тыс.

Также полезно повторить и обобщить ранее свойства сложения (переместительное и сочетательное) с иллюстрацией различных случаев их практического применения для рационализации вычислений. Интересно в этом отношении упражнение, в котором предлагается вычислить сумму нескольких слагаемых разными способами и сравнить эти способы вычислений: 11+2+8+9+10, 11+2+(8+9)+10, 11+(2+8)+9+10, (11+9)+(2+8)+10. Это задание направлено на отработку умений практически применять изученные свойства сложения, распространенные на два и более слагаемых. При выполнении этого упражнения учитель обращает внимание учащихся на то, что использование свойств сложения помогает заметно упростить вычисления, просит детей провести сравнение предложенных способов вычислений, выбрать самый рациональный и обосновать свой выбор. Чтобы выработать у учащихся навык практического использования этих свойств сложения, в дальнейшем в устный счёт целесообразно включить аналогичные примеры с тем, чтобы дети чаще тренировались в их использовании для упрощения вычислений с учётом конкретных особенностей примера. Если пример содержит более трёх слагаемых, его нужно записать на доске.

Такая подготовительная работа создаёт возможность учащимся самостоятельно объяснить письменные приёмы сложение и вычитание многозначных чисел.

При ознакомлении с письменным сложением и вычитанием многозначных чисел учащиеся решают такие примеры, где каждый последующий включает в себя предыдущий, например:

752 4752 54752 _837 _6837 _76837 _376837

+246 +3246+43246425242552425152425

После решения таких примеров учащиеся сами сделают вывод о том, что письменное сложение и вычитание многозначных чисел выполняется так же как и трёхзначных чисел.

Далее случаи сложения и вычитания вводятся с нарастающей трудностью: постепенно увеличивается число переходов через разрядную единицу; включаются случаи вычитания, когда в уменьшаемом содержаться нули; изучается сложение нескольких слагаемых, а также сложение и вычитание величин.

При изучении темы «Сложение и вычитание» проводиться повторение уже известных учащимся случаев сложения и вычитания с нулём: b+0=b, d – 0 = d, 0+с = с, b – b =0, которые включаются сразу же в примеры на письменные вычисления с многозначным числами.

При изучении названной темы перед учителем стоит задача распространить уже знакомые алгоритмы письменного сложения и вычитания на действия с числами больше тысячи, но в пределах миллиона. Эта задача не так сложна при изучении сложения. Уже на первом уроке можно рассмотреть сложение многозначных чисел, как без перехода, так и с переходом через разряд, предварительно повторив алгоритм письменного сложения чисел в пределах 1000, таблицу сложения и вычитания чисел в пределах 20.

Значительно усложняется задача рассмотрения письменных алгоритмов при переходе к вычитанию. Особое внимание следует обратить на новые для учащихся случаи вычитания, чтобы суметь предупредить часто возникающие ошибки. Как показывают наблюдения на уроках и анализ проверочных работ, общий алгоритм вычитания учащиеся усваивают неплохо, а вот его частные случаи, когда в записи уменьшаемого содержаться нули, усваиваются плохо и впоследствии допускают большое число ошибок. Причина таких ошибок в неумении заменять единицу высшего разряда единицами более низшего разряда. Именно на этом необходимо обратить внимание при переходе к рассмотрению этого случая вычитания.

Прежде чем приступить к разъяснению алгоритма вычитания, когда в записи уменьшаемого имеется несколько нулей подряд, целесообразно вспомнить особенности десятичной системы счисления, соотношение между разрядными единицами, предложив учащимся, например, заполнить пропуски в следующих предложениях:

в 1 миллионе 10 сот. тыс.

в 1 миллионе … сот. тыс. и 10 дес.тыс.

в 1 миллионе … сот. тыс. … дес.тыс. и 10 тыс.

в 1 миллионе … сот. тыс. … дес.тыс. … тыс. и 10 сот.

в 1 миллионе … сот. тыс. … дес.тыс. … тыс. … сот. 10 дес.

в 1 миллионе … сот. тыс. … дес.тыс. … тыс. … сот. … дес. и 10 ед.

Очень полезны в качестве подготовительных и примеры такого вида:

400 _ 300 _6000 _5000

8237 36

при решении которых необходимо подробно рассмотреть процесс занимания и замены взятой единицы высшего разряда 10 единицами среднего низшего разряда.

Объяснение нового для учащихся случая можно провести так:

Начинаем вычитание с единиц, но из 0 нельзя вычесть 2. в разряде десятков числа 4700 стоит нуль. Значит, придётся взять («развязать» - можно показать на счётных палочках, которые завязаны в пучки по 10 и 10 таких пучков завязаны в сотню) 1 сотню. Учитель показывает одну сотню палочек: «Сколько это десятков? (10 десятков.) Берём 1 десяток. Сколько же десятков из взятой нами сотни останется в разделе десятков? (9 десятков.) Запомним. Мы взяли одну сотню из 7. Чтобы не забыть об этом, поставим точку над цифрой 7 точку. Взятую сотню мы заменили десятками. В 1 сотне 10 десятков. Из этих 10 десятков (9+1) мы взяли один десяток и перенесли в разряд единиц. 1 десяток содержит 10 единиц. Тогда в разряде десятков останется 9 десятков. (При первом объяснении над нулём в разряде десятков можно записать цифру 9, а в дальнейшем делать это лишь тогда, когда ученик обнаружит непонимание этого момента.) Теперь из десятка, который мы взяли (10 единиц), вычтем число 2 (10-2 = 8), запишем 8 единиц под единицами; из 9 десятков вычтем 3 десятка, получим 6 десятков, записываем в разряде десятков. Точка над цифрой 7 показывает, что 1 сотня была взята, следовательно, осталось 6 сотен. Запишем 6 в разряд сотен и 4 в разряде тысяч ».

Дальнейшее расширение знаний письменных вычислений связано с рассмотрением приёмов письменного сложения трёх и большего числа слагаемых. Перед введением этих приёмов полезно вспомнить, что при сложении нескольких чисел их можно переставлять и объединять в группы любым способом.

Учитель объясняет, что при письменном сложении нескольких слагаемых, подписывают каждое слагаемое одно под другим: единицы под единицами, десятке под десятками и т.д. и складывают числа поразрядно. Как можно использовать этот способ при письменном сложении нескольких слагаемых, например: 3408+237.569+18.440 ? Пример записывается на доске. Учащиеся могут предложить сначала вычислить сумму двух первых слагаемых:

и затем к полученной сумме прибавить третье слагаемое:

+ 18440

На вопрос учителя: «Как находили сумму двух слагаемых?» - дети объясняют: «Мы подписали их одно под другим так, чтобы единицы одного числа стояли под единицами другого, десятки под десятками, сотни под сотнями и т.д., и складывали сначала единицы, потом десятки, потом сотни и т.д. по разрядам». Здесь следует задать вопрос, почему этот способ можно использовать при сложении трёх и более слагаемых. Далее учитель спрашивает: «Какое из трёх слагаемых удобно записать первым? Вторым? Третьим?» На доске появляется запись:

Учитель обращает внимание детей на то, что при такой записи знак «+» пишется только один раз. Вызванный к доске ученик с подробным объяснением выполняет сложение. Полученный ответ полезно сравнить с результатом вычислений при решении примера первым способом и сделать вывод.

Чтобы убедиться, овладели учащиеся умениями письменно овладевать несколько слагаемых, можно предложить им самостоятельно сложить четыре слагаемых.

В процессе изучения темы повторяются и обобщаются знание детей о взаимности между компонентами и результатом каждого из действий: сложения и вычитания. Желательно, чтобы дети сами вспомнили, что если из суммы вычесть одно из слагаемых, то получиться другое слагаемое, и т.п.

Для закрепления, как и в других случаях, для выработки навыков вычислений необходимо включать разнообразные упражнения. Следует, как можно чаще предлагать задания: решить и выполнить проверку решения примеров одним из способов или реже двумя способами. Это помогает не только закрепить знания связей между результатами и компонентами действий, но и способствует выработке вычислительных навыков и воспитывает привычку контролировать себя.

Домашнее задание:

Составить тематическую проверочную работу по теме «Сложение и вычитание многозначных чисел», подобрать (составить) задания на все приемы.


Похожая информация.


Сложение и вычитание многозначных чисел

Сложение и вычитание многозначных чисел изучается на последнем году обучения в начальных классах. Поэтому перед учителем стоит зада­ча обобщить, систематизировать знания детей о действиях сложения и вычитания, расширить их и углубить.

Сложение и вычитание многозначных чисел изучается одновременно. Подготовительная работа к изучению сложения и вычитания многознач­ных чисел начинается и проводится еще при изучении нумерации, где:

1) повторяются письменные приемы сложения и вычитания трехзнач­ных чисел;

2) рассматриваются устные приемы сложения и вычитания многознач­ных чисел, основанные на знании нумерации: 300 тыс. + 200 тыс.;

375 тыс. - 75 тыс.; 9999 + 1; 100 000 - 1 и др.

При этом должна осуществляться работа по обобщению и система­тизации знаний детей. С этой целью следует проводить повторение всех вопросов, связанных с этими действиями:

Названия компонентов и результата действий; зависимость между ними;

Табличные случаи сложения;

Проверка действий сложения и вычитания.

Изучение сложения и вычитания многозначных чисел следует начать с повторения известных детям письменных приемов сложения и вычита­ния трехзначных чисел, где дети вспоминают запись и рассуждения при выполнении действий.

Затем рассматриваются сложение и вычитание многозначных чисел сначала для наиболее простых случаев, где показывается, что сложение и вычитание многозначных чисел выполняется так же, как и трехзначных:

4752 6857

3246 2435

Затем следует брать случаи с нарастанием трудности в связи с увели­чением числа переходов через разрядную единицу.

_ 40 726 _ 24 260

32 074 12 435

Первые примеры целесообразнорешать с подробными рассуждения­ми. Затем они сворачиваются.

При изучении сложения и вычитания многозначных чисел детям не придется встречаться с принципиально новыми для них вопросами. Од­нако в этой теме есть моменты, которые требуют особого внимания учи­теля в силу их сложности, трудности для детей. Встречаются здесь и эле­менты нового.

Особо здесь следует обратить внимание на случаи вычитания, когда в уменьшаемом содержится несколько нулей подряд.

1000 70 000 40 100

_

486 19 360 28 092

Эти случаи вызывают определенную трудность у детей в связи с тем, что последовательное раздробление единиц высшего разряда выполня­ется несколько раз.

Чтобы предупредить возникновение этих трудностей и возможных ошибок и тем самым облегчить усвоение детьми этих случаев необходимо провести соответствующую подготовительную работу, в результате которой, детям будет легче ориентироваться в ом, что сотня - это 9 де­сятков и 10 единиц, 1000 - это 9 сотен, 9 десятков и 10 единиц и т.д.

Для этого следует вспомнить с учащимися известные им соотноше­ния (лучше всего это делать на счетах): 10 ед. = 1 дес., 10 дес. = 1 сот., 10 сот. = 1 тыс.

А затем провести рассуждения в обратном порядке: 1 тыс. = 10 сот, 1 сот. = 10 дес.,

1 дес. = 10 ед. Итак, получаем: 1 тыс. = 9 сот. 9 дес. 10 ед.

Решая эти примеры, следует требовать от детей давать подробные объяснения.

Первые примеры на вычитание следует решать с иллюстрацией на счетах и начинать с наиболее простых. Например, возможен такой вари­ант разговора с детьми.

Давайте решим пример.

Используем счеты.

Посмотрите, у нас есть одна сотня. А нам надо вычесть б единиц. Как можно заменить сотню на счетах?

Десятью десятками (сбрасываем косточку на третьей проволоке и откладываем 10 косточек на второй проволоке). Отметим это на примере.

Теперь, что мы можем сделать?

Взять один десяток и заменить его десятью единицами (сбрасыва­ем одну косточку на второй проволоке и откладываем 10 косточек на первой проволоке). Отметим опять это на примере.

Смотрим на счеты, что мы теперь имеем: была одна сотня, а те­перь 9 десятков и 10 единиц - это можно записать и в примере. Ведем рассуждения:

Из нуля единиц б единиц отнять нельзя. Возьмем 1 сотню (ставим точку) - это 10 десятков. Из них берем один десяток (ставим точку) - это 10 единиц, а десятков осталось 9.

Вычитаем: из 10 единиц вычесть 6 получится 4 единицы и 9 десят­ков. Ответ: 94.

Также подробно с использованием счетов следует решить еще один пример.

Рассуждения: Из нуля единиц 6 единиц отнять нельзя. Возьмем 1 тысячу - это 10 сотен. Из них берем одну сотню и заменим 10 десятками, из них берем 1 десяток - это 10 единиц. Получили 9 сотен 9 десятков и 10 единиц.

Вычитаем из 10 единиц вычесть 6 единиц получится 4 единицы, из 9 десятков вычесть 8 десятков получится 1 десяток и 9 сотен. Ответ: 914.

Постепенно примеры усложняются.

К этой же теме относят и действия над величинами метрической си­стемы мер. При рассмотрении этих вопросов мы показываем детям, что величины необходимо выразить в мерах одного наименования и над по­лученными числами выполнить соответствующие действия.

Например:

5т 750 кг + 4т 580 кг = 10т 330 кг

Выражаем величины в единицах одного наименования:

5т 750 кг = 5750 кг

4т 580 кг = 4580 кг

Выполняем действия над отвлеченными числами:

В ответе число записываем в таком виде, в каком числа даны в усло­вии, то есть в виде составного именованного числа.

В числе 10330 кг выделяем число тонн и килограммов, это 10 т 330 кг.

Целесообразно познакомить детей и с другим способом выполнения действий над составными именованными числами, без предварительных преобразований:

Т 750 кг

Т 580 кг

Т 330 кг.

При этом следует провести подробные рассуждения. Складываем килограммы:

0 единиц и 0 единиц получаем 0 единицы, 5 десятков и 8 десятков, получаем 13 десятков, это 1 сотня и 3 десятка. Пишем 3 под десятками, 1 сотню прибавим к сотням; 7 сотен и 5 сотен будет 12 сотен, да еще 1 сотня, всего 13 сотен. Это 1 тысяча и 3 сотни. 3 сотни пишем о под сотнями, а 1 тысячу килограммов - это 1 тонна, прибавим к тоннам. Складываем тонны: 5+4= 9; 9+1=10. Читаем ответ.

Вопросы и задания для самостоятельной работы

1. Какие случаи сложения и вычитания в концентре «Тысяча» относятся к устным, а какие к письменным?

2. Расскажите, как с помощью абака разъяснить учащимся сущность приемов письменного сложения и вычитания многозначных чисел.

3. Назовите все случаи письменного сложения и вычитания многозначных чисел. Приведите примеры, иллюстрирующие особые случаи сложения и вычитания.



4. Назовите типичные ошибки, допускаемые учащимися при сложении и вычитании многозначных чисел. Приведите примеры.

37. Сложение и вычитание многозначных чисел

1) Пишу выражение

2) Складываю единицы: 8+5=13; 13 - это 1 дес. и 3 ед.,

3 ед. пишу под единицами, 1 дес. запоминаю.

3) Складываю десятки: 6+9=15; еще 1 дес. будет 16 дес. Это 1 сот. 6 дес.; 6 дес. пишу под десятками, 1 сот. запоминаю.

4) Складываю сотни: 3+2=5, еще 1 сот. и будет 6 сотен.

Под сотнями пишу 6.

5) Читаю ответ..

37. Сложение и вычитание многозначных чисел.

После того как усвоено письменное сложение трехзначных чисел, сложение многозначных чисел не представляет для детей большой трудности. Однако необходимо проделать значительное количество упражнений, чтобы добиться безошибочного выполнения их.

Организуя упражнения, нужно предусмотреть различные варианты примеров на сложение: примеры без перехода и с переходом через разряд, примеры с одинаковым и разным количеством цифр в слагаемых, примеры, в которых первое слагаемое больше второго и наоборот, примеры без нулей и с нулями в слагаемых. Разнообразие примеров нужно не только для предупреждения ошибок, но и для формирования понятия сложения: применяя в разнообразных случаях сложения один и тот же способ решения, ученик начинает глубже понимать основной принцип сложения - его поразрядность.

Среди различных вариантов примеров большое место должно занимать сложение нескольких слагаемых. Подписывая слагаемые одно под другим, ученик вынужден анализировать структуру чисел, определять разрядное значение каждой цифры, приводить в соответствие одноименные разряды. Все это обогащает навык сложения. При суммировании разрядных чисел получаются суммы, выходящие за пределы таблицы сложения. Благодаря этому при сложении нескольких слагаемых закрепляются навыки устного сложения.

Приступая к объяснению сложения многозначных чисел, нужно прежде всего распространить имеющийся у детей навык сложения трехзначных чисел на любые числа, показав учащимся, что если 8 единиц да 5 единиц составляют 13 единиц, то 8 тысяч да 5 тысяч составляют 13 тысяч, 8 миллионов да 5 миллионов составляют 13 миллионов и т.д.

Когда дается объяснение и проводятся первые упражнения, учитель, а вслед за ним и ученики называют разряды чисел и подробно поясняют каждую операцию а в дальнейшем, когда переходят к упражнениям, направленным на автоматизацию навыка, от учеников требуют только краткие пояснения.(в речевых школах, мне кажется все время развернутые объяснения)

При формировании навыков письменного сложения многозначных чисел применяют переместительный и сочетательный законы сложения. Переместительный закон сложения уже известен детям; теперь ученики должны усвоить его точную формулировку, используя для проверки сложения, для "рациональной записи сложения нескольких слагаемых (столбиком), для облегчения и ускорения устных вычислений.

Сочетательный закон сложения полезно рассмотреть в плане его практического применения. Учащимся дается для сложения несколько слагаемых и предлагается отыскать наиболее рациональный способ решения. В своих поисках ученики приходят к выводу о возможности группировки слагаемых, заменяя сложение нескольких слагаемых их суммой.

В основу формирования навыков письменного вычитания многозначных чисел можно положить следующую систему упражнений:

1. Решение примеров, в которых цифры уменьшаемого больше соответствующих цифр вычитаемого.

2. Решение примеров, в которых вычитаемое наряду со значащими цифрами содержит и нули.

3. Решение примеров, в которых некоторые цифры уменьшаемого меньше соответствующих цифр вычитаемого.

4. Решение примеров с одним и несколькими нулями в уменьшаемом.

В каждой из ступеней различают примеры по числу цифр в уменьшаемом и вычитаемом, по числу переходов через разряд, по числу нулей в уменьшаемом и их расположению среди значащих цифр; так, могут быть примеры с двумя, тремя, четырьмя и более нулями подряд; нули могут перемежаться со значащими цифрами; между нулями может встречаться единица (400100 - 66724).

Разнообразие случаев вычитания при единстве принципа их решения сильнее подчеркивает этот принцип - строгую поразрядность вычитания.

В начале изучения этой темы нужно распространить знакомый детям прием вычитания единиц, десятков и сотен на высшие разрядные единицы, показав, что если 8 единиц без 2 единиц составляют 6 единиц, то и 8 тысяч без 2 тысяч составляют 6 тысяч, 8 миллионов без 2 миллионов - 6 миллионов, 8 сотен тысяч без 2 сотен тысяч - 6 сотен тысяч и т. д. К этому сводится в конце концов процесс письменного вычитания многозначных чисел.

В процессе объяснения вычитания полезно сформулировать правило письменного выполнения этого действия.

Это правило играет роль средства в борьбе за четкие, правильные и упорядоченные записи, за безошибочное вычисление.

При решении первых примеров ученики подробно объясняют каждую операцию, но при переходе к упражнениям, направленным на автоматизацию навыка, объяснения даются в краткой форме.

При объяснении нужно подробно и обстоятельно раскрыть процесс занимания единицы высшего разряда и раздробления ее в единицы низшего разряда, при этом особое внимание нужно уделить примерам, в которых встречаются нули. Операции с нулем нужно повторить на отдельных примерах: 5 - 0 = 5, потому что если от числа ничего не отнять, то и останется то же число. Вычитать из нуля нельзя, потому что нуль меньше всякого числа (разумеется, натурального).

Когда уменьшаемое выражено единицей с несколькими нулями (1000, 10000, 1 000000) и т. д., то на классных счетах нужно показать, что тысяча - это 9 сотен 9 десятков и 10 единиц, 10000 - это 9 тысяч 9 сотен 9 десятков и 10 единиц.

Хорошим наглядным пособием в таких случаях может служить пучок из тысячи палочек, состоящий из 10 сотенных пучков, каждый из которых в свою очередь состоит из 10 десятков, а в каждом десятке по 10 палочек-единиц. Чтобы вычесть из 1000 палочек, например, 32 палочки, «тысячный» пучок развязывается, причем он распадается на 10 сотен; 9 сотен оставляют, а одна сотня развязывается и распадается на 10 десятков и т. д. Ученики видят, как из тысячи без изменения ее величины получили 9 сотен 9 десятков и 10. единиц. После этого отнимают 32 палочки. Затем проводится параллель между вычитанием на палочках и письменным вычитанием на классной доске.

Способы устных вычислений

Устные приемы сложения и вычитания многозначных чисел изучаются в 4 классе четырехлетней начальной школы в следующем порядке:

1. Нумерационные случаи

а) Случаи вида:

99 999 + 1 345 000 - 1 560 999 + 1

560 000 - 1 399 999 + 1 40 000 - 1

При выполнении вычислений данного вида ссылаются на принцип построения натурального ряда чисел: добавление к числу единицы дает число, следующее по счету; вычитание единицы дает число, предшествующее по счету.

Например: 399 999 + 1 - добавляя к числу 1, получаем число следующее. Следующее за числом 399 999 число 400 000, значит 399 999 + 1 =400 000.

б) Случаи вида:

30 000 + 1 000 650 999 - 900 600 000 + 5

60 345 - 5 345 000 - 45 000 800 700 + 1 000

При выполнении вычислений данного вида ребенок должен хорошо знать принцип поразрядного строения чисел в десятичной системе счисления.

650 999 - 900 - 650 099

2. Сложение и вычитание целых тысяч

Сложение и вычитание вида 32 000 + 2 000, 690 000 - 50 000 является первым вычислительным приемом, с которого начинается формирование устных вычислений в объеме многозначных чисел.

Для освоения этого приема ребенок должен хорошо представлять разрядный состав многозначного числа. Рассматривая 32 000 как 32 тыс. и 2 000 как 2 тыс., прием 32 000 + 2 000 вычисляется, как 32 тыс. + 2 тыс. Ответ 34 тыс. затем рассматривается, как 34 000 и записывается результат вычислений. Таким образом, действия целыми тысячами рассматриваются как действия разрядными единицами, вычисления в этом случае сводятся к табличным вычислениям в пределах 10, 20 пли 100.

3. Сложение и вычитание целых тысяч на основе правил арифметических действий

Учебник математики для 4 класса практически не предлагает вычислений соответствующего вида, однако учителя часто используют их на устном счете.

К этим случаям относятся вычисления вида: 70 200 + 400, 600 100 - 99, 3 008 + 351,425 100 - 24 100 и т. п.

При вычислениях используется знание десятичного состава многозначных чисел и понимание того, что во всех случаях действия затрагивают только часть первого числа (первое число может рассматриваться как сумма). Таким образом действия могут выполняться только с частью первого числа.



Например:

Вычисляя сумму 70 200 + 400, можно отдельно сложить 400 и 200, а затем их сумму прибавить к числу 70 000. Фактически используется правило прибавления числа к сумме.

При выполнении вычислений в случае 425 100 - 24 100 используется правило вычитания числа из суммы. 425 100 рассматривается, как сумма 400 000 и 25 100. Из одного из слагаемых вычитается 24 100 (25 100 - 24 100 = 1 000), и полученный результат складывается с первым слагаемым: 400 000 + 1 000 = 401 000.

В основе всех этих случаев лежит хорошее знание разрядного состава многозначных чисел и умение выполнять устные вычисления целыми разрядами.

Способы письменных вычислений (в столбик)

Письменные приемы сложения и вычитания являются основными вычислительными действиями при вычислениях в объеме многозначных чисел, поскольку вычисления в уме с многозначными числами представляют собой слишком сложную проблему для всех детей. Использование письменных алгоритмов вычислений в этих условиях является психологически и методически оправданным.

Усвоение детьми нумерации четырехзначных и многозначных чисел позволяет им осуществить перенос умения складывать и вычитать числа «столбиком» из области трехзначных чисел на область многозначных чисел.

При знакомстве с письменными приемами сложения и вычитания в объеме многозначных чисел проводится аналогия с алгоритмом письменного сложения и вычитания в пределах 1000:

1) Письменное сложение и вычитание любых многозначных чисел выполняется так же, как сложение и вычитание трехзначных чисел.

2) При записи столбиком, как и при сложении трехзначных чисел следует записывать разряд под соответствующим разрядом, и складывать сначала единицы, потом десятки, а потом сотни, потом тысячи и т. д. (справа налево).

Считается, что дети хорошо научены выполнять действия сложения и вычитания в столбик, поэтому в учебнике 4 класса не предусмотрено распределение случаев сложения и вычитания по уровням сложности.

Первыми рассматриваются различные случаи с переходами через разряд как при сложении так и при вычитании: 3 126 + 4 232; 25 346 - 13 407.

Затем рассматриваются случаи вычитания с нулями в уменьшаемом:

600 - 25; 1 000 - 124; 30 007 - 648.

Эти случаи являются наиболее сложными, поскольку требуют «заема» разрядных единиц не из соседних, а из далеко отстоящих разрядов. Эти случаи полезно сначала сопровождать подробной пояснительной записью на доске, чтобы дети понимали и видели, откуда появляются девятки в «пустых» разрядах.

Например:

30 007 Вычитаю единицы. Из 7 нельзя вычесть 8. 648 Пробую занять единицу в соседнем разряде.

В разряде десятков, сотен и тысяч нет разрядных единиц, поэтому «заем» возможно произвести только из разряда десятков тысяч: 30 тыс. - 1 тыс. = 29 тыс. Подписываем 29 над 30.

«Занятую» тысячу представляем в виде суммы 1 тыс. = 1000 = = 990 + 10.

Подписываем над разрядами сотен и десятков девятки, а из 10 единиц вычитаем 8, получаем 2 единицы. Но в разряде единиц было 7 единиц. Добавляем их к полученным 2 единицам и пишем в разряде единиц 9.

Вычитаем: 9 дес. - 4 дес. = 5 дес. Пишем 5 в разряде десятков. 9 сот. - 6 сот. = 3 сот. Пишем 3 в разряде сотен.

От десятков тысяч осталось 29 тыс. Пишем 9 в разряде тысяч, 2 - в разряде десятков тысяч.

При изучении сложения и вычитания многозначных чисел рекомендуется повторять и закреплять названия компонентов и результатов действий; свойства нахождения неизвестных компонентов действий при проверке результатов вычислений; рассматривать закономерности изменения суммы и разности при изменении одного из компонентов действий.

Многие дети используют калькуляторы как при выполнении вычислений с многозначными числами, так и при проверке результатов. В старших классах не возбраняется использовать калькуляторы при необходимости выполнить громоздкие вычисления (на уроках физики, химии, геометрии).

Чтобы стимулировать ребенка к использованию умения самостоятельно вычислять в столбик, следует предлагать задания, не позволяющие механического использования калькулятора для вычисления результата. Это различные задания на нахождение ошибки в записях или цифрах вычислений, на прикидку округленных результатов вычислений, на восстановление пропущенных цифр в компонентах действий, на выбор верных ответов из предложенных и т. п. Учителю следует помнить, что механический характер вычислительных действий при вычислениях с многозначными числами быстро приводит к утомлению детей, что провоцирует появление ошибок. Поэтому не стоит задавать подряд больше трех примеров на вычисления с многозначными числами.

Лекция 10. Умножение

1. Смысл действия умножения.

2. Табличное умножение.

3. Приемы запоминания таблицы умножения.

Смысл действия умножения

Действие умножения рассматривается как суммирование одинаковых слагаемых.

По определению умножение целых неотрицательных чисел (натуральных) - это действие, выполняющееся по следующим правилам:

а b = a+ a+ a+ a+ a ...+ а, при b > 1

b слагаемых

а 1 = а, при b = 1

а 0 = 0, при b = 0

Использование символики умножения позволяет сократить запись сложения одинаковых слагаемых.

Запись вида 2-4 = 8 подразумевает сокращение записи вида 2 + 2 + 2 + 2 = 8. Ее читают так: «по 2 взять 4 раза, получится 8»; или: «2 умножить на 4 получится 8».

Действие умножения во всех учебниках математики для начальных классов рассматривают ранее действия деления.

С теоретико-множественной точки зрения умножению соответствуют такие предметные действия с совокупностями (множествами, группами предметов) как объединение равных (равночисленных) совокупностей. Поэтому, прежде, чем знакомиться с символикой записи действий и вычислениями результатов действий, ребенок должен научиться моделировать на предметных совокупностях все эти ситуации, понимать (т. е. правильно представлять) их со слов учителя, уметь показывать руками как процесс, так и результат предметного действия, а затем характеризовать их словесно.

Виды заданий, которые предлагаются детям до знакомства с символикой действия умножения (в 1 и 2 классе):

1. Посчитай двойками (тройками, пятерками).

2. Нарисуй рисунок: «На трех тарелках по 2 апельсина». Сосчитай, сколько всего апельсинов.

3. Найди лишнюю запись:

Найди значение каждого выражения наиболее удобным способом.

4. Сделай запись выражения по рисунку:

Виды заданий, используемых для усвоения ребенком смысла умножения при знакомстве с этим действием:

а) На соотнесение рисунка и математической записи:

Рассмотри рисунок и объясни записи:

2 + 2 + 2 + 2 + 2 = 10и2.5 = 10 5 + 5= 10и5-2= 10

4 + 4 + 4 = 12 4-3=12

б) На нахождение суммы одинаковых слагаемых: Рассмотри рисунки и закончи записи:

в) На замену сложения умножением:

Замени, где возможно сложение умножением и вычисли результаты:

5+5+5+5 1+1+1+1+1 5+6+3

42 + 42 0 + 0+0 + 0 + 0 4 + 6 + 8

г) На понимание смысла определения действия умножения:

Рассмотри записи и объясни, какое число берется слагаемым и сколько раз берется слагаемым это число: 6-4 = 24 9-3 = ...

6 + 6 + 6 + 6 = 24 9 + 9 + 9 =...

Выражение вида 3 5 называют произведением. Числа 3 и 5 в этой записи называют сомножителями (множителями).

Запись вида 3 5 = 15 называют равенством. Число 15 называют значением выражения. Поскольку число 15 в данном случае получено в результате умножения, его также часто называют произведением.

Например:

Найдите произведение чисел 4 и 6. (Произведение чисел 4 и 6 - это 24.)

Поскольку названия компонентов действия умножения вводятся по соглашению (детям сообщаются эти названия и их необходимо запомнить), педагог активно использует задания, требующие распознавания компонентов действий и употребления их названий в речи.

Например:

1. Среди данных выражений найдите такие, в которых первый множитель равен 3 (второй множитель равен 2 и т. д.):

2-2 7-3 6-2 1.6 3-5 3-2 7-3 3-4 3-1

2. Составьте произведение, в котором второй множитель равен 5. Найдите его значение.

3. Выберите примеры, в которых произведение равно 6. Подчеркните их красным цветом. Выберите примеры, в которых произведение равно 12. Подчеркните их синим цветом.

7-3 6-1 2-2 2-3 6-2 3-2 2-6

4. Как называют число 4 в выражении 5 4? Как называют число 5? Найдите произведение. Составьте пример, в котором произведение равно тому же числу, а множители другие.

5. Множители 8 и 2. Найдите произведение.

В третьем классе дети знакомятся с правилом взаимосвязи компонентов умножения, которое является основой для обучения нахождению неизвестных компонентов умножения при решении уравнений:

Если произведение разделить на один множитель, то получится другой множитель.

Например:

Решите уравнение 6 * х = 24. (В уравнении неизвестен множитель. Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель. х= 24:6, х = 4.)

Однако, данное правило в учебнике математики 3 класса не является обобщением представлений ребенка о способах проверки действия умножения. Правило проверки результатов умножения рассматривается в учебнике намного позже - после знакомства с вне-табличным умножением и делением (знакомства с умножением и делением двузначных чисел на однозначные, не входящим в таблицу умножения и деления). Это объясняется тем, что правило взаимосвязи компонентов умножения является основой составления таблицы деления. Поскольку предполагается, что табличные случаи умножения ребенок к этому времени знает наизусть, то нет необходимости в проверке результатов. Есть только необходимость быстро восстанавливать (вспоминать) нужное третье число по двум данным.

Например:

9-2 = ... 5-4 = ... 1*7 = ...

18:2 = ... 20:4 = ... 7:7 = ...

При выполнении устного внетабличного умножения, требующего применения достаточно сложного алгоритма, необходима проверка, поскольку многие дети часто ошибаются в этих случаях.

Правило проверки действия умножения:

1) Произведение делят на множитель.

2) Сравнивают полученный результат с другим множителем. Если эти числа равны, умножение выполнено верно.

Например: 18 4 = 72. Проверка: 1) 72: 4 = 18; 2) 18 = 18.

Табличное умножение

Изучение таблицы умножения является центральной задачей обучения математике во 2 и 3 классе.

К табличному умножению относят случаи умножения однозначных натуральных чисел на однозначные натуральные числа, результаты которых находят на основе конкретного смысла действия умножения (находят суммы одинаковых слагаемых).

Результаты табличного умножения в соответствии с программными требованиями к знаниям, умениям и навыкам дети должны знать наизусть. Умножение с числом нуль, умножение с числами 1 и 10 относят к особым случаям.

Первые приемы составления таблиц умножения связаны со смыслом действия умножения (см. предыдущий пункт). Результаты этих таблиц получают последовательным сложением одинаковых слагаемых.

Например:

Расположенный рядом рисунок помогает ребенку получить результат пересчетом фигурок. При небольших значениях множителей прием сосчитывания для получения табличного значения произведения вполне приемлем, и учитель им часто пользуется при получении результатов таблиц значений умножения чисел 2, 3, 4. Приведенный пример показывает, что этот прием удобен лишь при небольших значениях второго множителя.

При значении второго множителя больше 5, удобнее использовать для получения результатов табличных значений другой прием: прием прибавления к предыдущему результату. Например:

Вычисли и запомни: 2-6 = 2.5 + 2 = ... 2-7 = 2.6 + 2 =... 2-8 = 2.7 + 2 2.9 = 2-8 + 2 =...

В учебнике математики для 2 класса этот прием дан более пространно, и поэтому не всегда правильно понимается с точки зрения техники выполнения:

2 + 2 + 2 + 2 + 2 + 2 + 2 2-7ит.п.

Аналогичным образом составляется таблица значений умножения числа 3.

Следующим приемом, на основе которого составляются таблицы значений умножения чисел, является прием перестановки множителей.

Этот прием фактически является первым математическим законом относительно действия умножения в начальной школе:

От перестановки множителей произведение не меняется.

Способ знакомства детей с этим правилом (законом) обусловлен ранее введенным смыслом действия умножения. Используя предметные модели множеств, дети сосчитывают результаты группировки их элементов разными способами, убеждаясь, что результаты не меняются от изменения способов группировки.

Например:

Счет элементов рисунка (множества) парами по горизонтали совпадает со счетом элементов тройками по вертикали. Рассмотрение нескольких вариантов подобных случаев дает учителю основание произвести индуктивное обобщение (т. е. обобщение нескольких частных случаев в обобщенном правиле) о том, что перестановка множителей не меняет значение произведения.

На основе этого правила, используемого как прием счета, составляется таблица умножения на 2.

Например:

Используя таблицу умножения числа 2, вычисли и запомни таблицу умножения на 2:

2 = 2 = 2 = 2 = 2 = 2 = 2 =

На основе этого же приема составляется таблица умножения на 3:

3-4 = 12 3-7 = 21 4-3 = ... 7-3=...

3-5= 15 3-8 = 24 5-3 = ... 8-3 = ...

3-6 = 18 3-9 = 27 6-3=... 9-3 = ...

Составление двух первых таблиц распределяется на два урока, что соответственно увеличивает время, отведенное на их заучивание. Каждая из двух последних таблиц составляется на одном уроке, поскольку предполагается, что дети, зная исходную таблицу, не должны отдельно заучивать результаты таблиц, полученных с помощью перестановки множителей. На самом деле, многие дети учат каждую таблицу отдельно, поскольку недостаточный уровень развития гибкости мышления не позволяет им легко перестроить модель заученной схемы табличного случая в обратном порядке. При вычислении случаев вида 9 2 или 8 3 дети снова возвращаются к приему последовательного сложения, что естественно требует времени для получения результата. Такая ситуация порождается скорее всего тем, что для значительного числа детей такое разнесение во времени взаимосвязанных случаев умножения (тех, что связаны правилом перестановки множителей) не позволяет сформироваться ассоциативной цепочке, ориентированной именно на взаимосвязь. Та же ситуация прослеживалась у ряда детей при применении свойства перестановки слагаемых для составления таблиц сложения: запомнив случай 3 + 5, такой ребенок учит отдельно случай 5 + 3, поскольку требование выучить этот случай поступает от учителя через 16 уроков после требования заучить первый, и при этом в промежутке заучивалась таблица вида □ + 4, □ - 4. Иными словами, отсрочка в образовании ассоциативной связи, ориентированной на взаимосвязь этих случаев, оказалась для ребенка слишком большой, что помешало образованию такой связи. Поэтому каждый случай из фактически взаимосвязанной пары учится ребенком наизусть отдельно.

При составлении таблицы умножения числа 5 в 3 классе, только первое произведение получают путем сложения одинаковых слагаемых: 5-5 = 5 + 5 + 5 + 5 + 5 = 25. Остальные случаи получают приемом прибавления пяти к предыдущему результату:

5-6 = 5- 5 + 5 = 30 5-7 = 5-6 + 5 = 35 5-8 = 5-7 + 5 = 40 5-9 = 5- 8 + 5 = 45

Одновременно с этой таблицей составляется и взаимосвязанная с ней таблица умножения на 5: 6 5; 7 5; 8 5; 9 5.

Таблица умножения числа 6 содержит четыре случая: 6 6; 6 7; 6-8; 6-9.

Таблица умножения на 6 содержит три случая: 7 6; 8 6; 9 6.

Таблица умножения числа 7 содержит три случая: 7 7; 7 8; 7 9.

Таблица умножения на 7 содержит два случая: 8 7; 9 7.

Таблица умножения числа 8 содержит два случая: 8 8; 8 9.

Таблица умножения на 8 содержит один случай: 9 8.

Таблица умножения числа 9 содержит, только один случай: 9 9.

Теоретический подход к подобному построению системы изучения табличного умножения предполагает, что именно в таком соответствии ребенок и будет запоминать случаи табличного умножения.

Наибольшее количество случаев содержит наиболее легкая для запоминания таблица умножения числа 2, а наиболее трудная для запоминания таблица умножения числа 9 содержит всего один случай. Реально, рассматривая каждую новую «порцию» таблицы умножения, учитель обычно восстанавливает весь объем каждой таблицы (все случаи). Даже при условии, что учитель обращает внимание детей на то, что новым случаем на данном уроке является, например, только случай 9 9 , а 9 8 , 9 7 и т. п. изучались на предыдущих уроках, большая часть детей воспринимает весь предложенный объем как материал для нового заучивания. Таким образом, фактически, для многих детей таблица умножения числа 9 является самой большой и сложной (а это действительно так, если иметь в виду перечень всех случаев, который к ней относится).

Большой объем материала, требующего заучивания наизусть, сложность в образовании ассоциативных связей при запоминании взаимосвязанных случаев, необходимость достижения всеми детьми прочного запоминания всех табличных случаев наизусть в установленные программой сроки - все это делает тему изучения табличного умножения в начальных классах одной из наиболее методически сложных. В связи с этим важными являются вопросы, связанные с приемами запоминания ребенком таблицы умножения.

При изучении этой темы основными задачами учителя являются обобщить и систематизировать знания учащихся о действиях сложения и вычитания, закрепить навыки устного сложения и вычитания, выработать осознанные и прочные навыки письменных вычислений. Сложения и вычитание многозначных чисел изучаются одновременно. Это создает лучшие условия для овладения знаниями, умениями и навыками, так как вопросы теории этих действий взаимосвязаны, а приемы вычислений сходны.

Подготовительную работу к изучению темы начинают еще при изучении нумерации многозначных чисел. С этой целью прежде всего повторяют устные приемы сложения и вычитания и свойства действий, на которые они опираются, например: 8400+600, 9800-700, 2000-1700,740 000 + 160 000 и т.п. Повторяют так же письменные приемы сложения и вычитания трехзначных чисел. Полезно в устные упражнения включить задания на сложение и вычитание разрядных чисел с пояснениями вида: 6 сот. + 8 сот. = 1 тыс. 4 сот.; 1 сот. тыс. 5 дес. тыс. - 7 дес. тыс. = 15 дес. тыс. - 7 дес. тыс. = 8 дес. тыс. Такая подготовительная работа создает возможность учащимся самостоятельно объяснить письменные приемы сложения и вычитания многозначных чисел.

Далее случай сложения и вычитания вводятся с нарастающей трудностью: постепенно увеличивается число переходов через разрядную единицу; включаются случаи вычитания, когда в уменьшаемом содержаться нули; изучается сложение нескольких слагаемых, а также сложение и вычитание именованных чисел. Знакомясь с новыми случаями, дети сначала дают подробные пояснения вычислений (называют разрядные единицы и выполняемые преобразования).

К 9 единицам прибавить 7 единиц, получиться 16 единиц, или 1 десяток и 6 единиц; 6 единиц записываем под единицами, а десяток прибавим к десяткам. К 9 десяткам прибавим 0 десятков, получиться 9 десятков, да еще 1 десяток - получиться 10 десятков, или 1 сотня, на месте десятков в сумме пишем 0, а 1 сотню прибавим к сотням.

0 сот. + 0 ст. = 0 сот., 0 сот. + 1 сот. = 1 сот. К 7 тысячам прибавим 6 тысяч, получиться 13 тысяч, или 1 десяток тысяч и 3 единицы тысячи. 3 единицы тысячи записываем, а 1 десяток тысяч прибавим к 4 десяткам тысяч получиться 5 десятков тысяч. Сумма 53 1906.

После того как дети освоят прием вычисления, переходят к сокращенным пояснениям решения: вслух и про себя. Покажем на этом же примере: 9 да 7 - шестнадцать, 6 пишем, 1 запоминаем; 9 да 0 - девять, да 1 - десять, 0 пишем, 1 запоминаем; 0 плюс 0 - нуль, да 1 - один (записываем) и т.д. Краткие пояснения способствуют выработке навыков быстрых вычислений.

Некоторую трудность представляются случаи вычитания, когда уменьшаемое выражению разрядным числом. Последовательное раздробление единиц высшего разряда в единицы низшего удобно проиллюстрировать на счетах (1000 можно представить как 9 сот., 9 дес., 10 ед.; 10 000 - как 9 тыс., 9 сот., 9 дес., 10 ед. и и т.д.). Полезно, кроме того, включить в устные упражнения решение с пояснением таких примеров: 1 дес. - 2 ед., 1 сот. - 5 дес., 1 тыс. - 7 сот. и т.п. Особое внимание следует уделить случаям вычитания, в которых последовательное раздробление единиц высшего разряда выполняется неоднократно, например: 100 100 - 205 708. Целесообразно подобные случаи сопоставить с предыдущими (100 00 - 4097 и 701 000 - 4097 и т.п.), а так же требовать пробного объяснения решения примеров.

Из нуля единиц не можем вычесть 8 единиц. Берем 1 сотню (ставим точку над сотнями) и раздробляем сотню в десятки. В 1 сотне 10 десятков, берем из 10 десятков 1 десяток (запомним, что осталось 9 десятков). Раздробляем десяток в единицы, получаем 10 единиц. Из 10 единиц вычитаем 0 десятков, получается 9 десятков. Из нуля сотен не можем вычесть 7 сотен. Берем 1 сотню тысяч, раздробляем ее в десятки тысяч, получаем 10 десятков тысяч, из них берем 1 десяток тысяч и раздробляем его в единицы тысяч (запомним, что осталось 9 десятков тысяч) и т.д. Позднее дети кратно поясняют решение примеров на вычитание. Приведем сокращенное пояснение к рассмотренному примеру: берем 1 сотню, из 10 вычитаем 8, получиться 2; из 9 вычитаем нуль, получиться 9; берем 1 сотню тысяч, из 10 вычитаем 7, получиться 3; из 9 вычитаем 5, получиться 4; из 9 вычитаем 0, получиться 9; из 3 вычитаем 2, получиться 1; разность 194392.

Как и в других случаях, для выработки навыков вычислений необходимо включить разнообразные упражнения. Следует как можно чаще предлагать задания: решить и выполнить проверку решения примеров одним из способов или реже двумя способами. Это помогает не только закрепить знания взаимосвязей между результатами и компонентами действий, но и способствует выработке вычислительных навыков и воспитывает привычку контролировать себя.

При изучении сложения и вычитания многозначных чисел важно уделить внимание устным приемам выполнения этих действий, иначе, овладев письменными приемами вычислений, дети начинают применять их как для письменных, так и для устных случаев. С этой целью необходимо при решении примеров предлагать учащимся самим выбирать примеры, которые они могут решить устно (с записью в строчку), и лишь наиболее трудные примеры решать с помощью письменных приемов (с записью в столбик). В устных упражнениях следует систематически закреплять приемы устного сложения и вычитания 2-3-значных чисел, а также многозначных с применением приемов перестановки и группировки при сложении нескольких чисел, с использованием там, где уместно, приема округления одного из компонентов сложения и вычитания. Вслед за изучение сложения и вычитания многозначных чисел приступают к сложению и вычитанию составных именованных чисел, выраженных в метрических мерах, так как приемы этих вычислений сходны. Умение выполнять действия над именованными числами необходимо для решения задач. Действия над составными именованными числами можно выполнять по-разному: либо сразу складывать (вычитать) единицы одинаковых наименований, начиная с низших, попутно выполняя соответствующие преобразования, либо сначала преобразовать данные числа в простые именованные числа с одинаковыми наименованиями, выполнить действия над ними как над отвлеченными числами и выразить полученный результат в более крупных единицах измерения. И тот и другой прием показывают учащимися. Первый способ экономный в записи, хорошо иллюстрирует аналогию действий над отвлеченными и именованными числами, но несколько труден для детей. Использование его следует ограничить 2-3 упражнениями, цель которых - сопоставить приемы вычислений с отвлеченными и именованными числами:

  • 12647 12m 647 кг 12 км 647 м 13086 13 км 086 м
  • 5384 5m 384 кг 5 км 384 м 8265 8 км 265 м
  • (10 сотен образуют 1 тысячу, которую прибавляем к тысячам, … 10 сотен килограммов образуют 1 тысячу килограммов, или 1 т, которую прибавляем к тоннам, и т.п.; … из 0 сотен 2 сотни не вычесть, берем 1 тысячу, 1 тысяча составляет 10 сотен, из 10 сотен вычитаем 2 сотни и аналогично; … занимаем 1 км, в 1 км - 1000 м или 10 сотен метров, из 10 сотен метров вычитаем 2 сотни метров). Как видно, здесь приходится детям оперировать числами вида 10 сотен килограммов, 10 сотен метров, 10 десятков копеек и т.п., которые имеют двойные наименования - единиц счёта и единиц измерения, что, безусловно, затрудняет их преобразования и действия над ними.

Второй способ вычислений над именованными числами гораздо проще, хотя и более громоздкий в записи - наиболее широко используется при решении примеров и задач. Чтобы сократить записи, преобразования именованных чисел можно выполнять устно и не записывать:

124 руб. - 78 руб. 50 коп. = 45 руб. 50 коп. 12400

Несколько позднее (в конце второго полугодия III класса) изучается сложение и вычитание именованных чисел, выраженных в мерах времени. Эти вычисления гораздо сложнее, потому что единицы времени находятся в недесятичных соотношениях. На это специально обращают внимание детей, предлагая им сравнить решение примеров (т.е. найти сходное и различное в приемах вычислений):

  • 13 м 54 см 13 ч 54 мин 12 м 34 см 12 ч 34 мин
  • 6 м 46 см 6 ч 46 мин 8 м 56 см 8 ч 56 мин

Сложение и вычитание составных именованных чисел, выраженных в единицах времени, целесообразно выполнять, не производя замены их простыми именованными числами, например:

  • 12 лет 10 мес.
  • 5 лет 11 мес.
  • 6 лет 11 мес.

Из 10 мес. Не вычесть 11 мес., берем 1 год и выражаем его в месяцах - 12 месяцев. 12 мес. да 10 мес. - это 22 мес. Из 22 мес. вычтем 11 мес., получим 11 мес., из 11 лет вычтем 5 лет, получим 6 лет.

Упражнения на сложение и вычитание именованных чисел, выраженных в единицах времени, с небольшими числами надо выполнять устно без записи вычислений столбиком.

В процессе изучения сложения и вычитания многозначных чисел повторяют и закрепляют знания о действиях: названия компонентов и результатов действий, свойства, нахождение неизвестных компонентов, рассматривается вопрос об изменении суммы и разности при измерении одного из компонентов.

М.А. Бантова выделяет следующие ошибки учащихся при сложении и вычитании многозначных чисел:

1. Ошибки, вызванные неправильной записью примеров в столбик при письменном сложении и вычитании.

С целью предупреждения подобных ошибок надо обсуждать с учениками такие неверные решения, в результате чего они должны заметить, что в данном примере неверно подписаны числа, поэтому сложили десятки с единицами, сотни с десятками, а надо числа подписывать так, чтобы единицы стояли под единицами, десятки под десятками, и т.д., и складывать единицы с единицами, десятки с десятками и т.д. Кроме того, нужно научить учеников проверять решение примеров. Названную ошибку легко обнаружить, выполнив проверку способом прикидки результата. Так, в отношении приведенного примера на сложение рассуждение ученика будет таким: «К 5 сотням прибавили число, которое меньше 1 сотни, а в сумме получили 9 сотен, значит в решении допущена ошибка».

2. Ошибки при выполнении письменного сложения, обусловленные забыванием единиц того или иного разряда, которые надо было запомнить, а при вычитании - единиц, которые занимали.

Предупреждению таких ошибок также помогает обсуждение с учениками неверно решенных примеров. После этого важно подчеркнуть, что всегда надо проверять себя - не забыли ли прибавить число, которое надо было запомнить, и не забыли ли о том, что занимали единицы какого-то разряда. Выявлению таких ошибок самими учениками помогает выполнение проверок сложения вычитанием и вычитания сложением.

Заметим, что в некоторых методических пособиях и статьях для предупреждения названных ошибок в письменном сложении с переходом через десяток рекомендуется начинать сложение с единиц, которые запоминали. Например, при решении приведенного примера ученик тогда должен рассуждать: «К десяти прибавить 5, получится 14, четыре пишем, а 1 запоминаем: 1 да 3 - четыре, да 2, всего 6» и т.д. Этого делать не следует, потому что некоторые ученики переносят этот прием на письменное умножение, что вызовет ошибку, например при умножении чисел 354 и 6 они рассуждают так: «4 умножить на 6, получится 24, четыре пишем, 2 запоминаем; 2 да 5 - 7, 7 умножить на 6, получится 42» и т.д.

3. Ошибки в устных приёмах сложения и вычитания чисел больших ста (540±300, 1600±700 и т.п.) те же, что и при сложении и вычитании чисел в пределах ста. Для их устранения используются методические приемы, о которых говорилось выше.