Logaritmiliste võrratuste lahendamine, kui alus on x. Komplekssed logaritmilised võrratused

Logaritmilised võrratused

Eelmistes tundides tutvusime logaritmiliste võrranditega ja nüüd teame, mis need on ja kuidas neid lahendada. Tänane tund on pühendatud logaritmilise ebavõrdsuse uurimisele. Mis on need ebavõrdsused ja mis vahe on logaritmilise võrrandi ja ebavõrdsuse lahendamisel?

Logaritmilised võrratused on võrratused, mille muutuja on logaritmi märgi all või selle aluses.

Või võime ka öelda, et logaritmiline võrratus on ebavõrdsus, milles selle tundmatu väärtus, nagu logaritmilises võrrandis, ilmub logaritmi märgi alla.

Lihtsaimatel logaritmilistel võrratustel on järgmine kuju:

kus f(x) ja g(x) on mõned avaldised, mis sõltuvad x-ist.

Vaatame seda selle näite abil: f(x)=1+2x+x2, g(x)=3x−1.

Logaritmiliste võrratuste lahendamine

Enne logaritmiliste võrratuste lahendamist tasub tähele panna, et lahendatuna sarnanevad need eksponentsiaalvõrratustega, nimelt:

Esiteks, liikudes logaritmidelt logaritmi märgi all olevatele avaldistele, peame võrdlema ka logaritmi alust ühega;

Teiseks, logaritmilise võrratuse lahendamisel muutujate muutumise abil peame lahendama võrratusi muutuse suhtes, kuni saame lihtsaima võrratuse.

Kuid teie ja mina oleme kaalunud logaritmilise ebavõrdsuse lahendamise sarnaseid aspekte. Nüüd pöörame tähelepanu üsna olulisele erinevusele. Sina ja mina teame, et logaritmilisel funktsioonil on piiratud määratluspiirkond, seetõttu peame logaritmidelt logaritmimärgi all olevatele avaldistele liikudes arvestama lubatud väärtuste vahemikuga (ADV).

See tähendab, et tuleb arvestada, et logaritmilise võrrandi lahendamisel saame teie ja mina kõigepealt leida võrrandi juured ja seejärel seda lahendust kontrollida. Kuid logaritmilise võrratuse lahendamine sel viisil ei toimi, kuna liikudes logaritmidelt logaritmimärgi all olevatele avaldistele, on vaja üles kirjutada ebavõrdsuse ODZ.

Lisaks tasub meeles pidada, et võrratuste teooria koosneb reaalarvudest, milleks on positiivsed ja negatiivsed arvud, aga ka arvust 0.

Näiteks kui arv "a" on positiivne, peate kasutama järgmist tähistust: a >0. Sel juhul on nii nende arvude summa kui ka korrutis positiivne.

Peamine põhimõte ebavõrdsuse lahendamisel on asendada see lihtsama võrratusega, kuid peamine on see, et see oleks samaväärne antud ebavõrdsusega. Edasi saime ka ebavõrdsuse ja asendasime selle jällegi lihtsama kujuga jne.

Lahendades ebavõrdsust muutujaga, peate leidma kõik selle lahendused. Kui kahel võrratusel on sama muutuja x, siis on sellised võrratused samaväärsed eeldusel, et nende lahendid langevad kokku.

Logaritmiliste võrratuste lahendamise ülesannete täitmisel tuleb meeles pidada, et kui a > 1, siis logaritmiline funktsioon suureneb ja kui 0< a < 1, то такая функция имеет свойство убывать. Эти свойства вам будут необходимы при решении логарифмических неравенств, поэтому вы их должны хорошо знать и помнить.

Logaritmiliste võrratuste lahendamise meetodid

Vaatame nüüd mõningaid meetodeid, mis toimuvad logaritmiliste võrratuste lahendamisel. Parema mõistmise ja assimilatsiooni huvides püüame neid konkreetsete näidete abil mõista.

Me kõik teame, et kõige lihtsamal logaritmilisel võrratusel on järgmine vorm:

Selles ebavõrdsuses on V üks järgmistest ebavõrdsuse märkidest:<,>, ≤ või ≥.

Kui antud logaritmi alus on suurem kui üks (a>1), tehes ülemineku logaritmidelt avaldistele logaritmi märgi all, siis selles versioonis säilib ebavõrdsuse märk ja ebavõrdsus on järgmisel kujul:

mis on samaväärne selle süsteemiga:


Juhul, kui logaritmi alus on suurem kui null ja väiksem kui üks (0

See on samaväärne selle süsteemiga:


Vaatame veel näiteid alloleval pildil näidatud kõige lihtsamate logaritmiliste võrratuste lahendamisest:



Lahendusnäited

Harjutus. Proovime seda ebavõrdsust lahendada:


Vastuvõetavate väärtuste vahemiku lahendamine.


Nüüd proovime selle paremat külge korrutada:

Vaatame, mida saame välja mõelda:



Liigume nüüd sublogaritmiliste avaldiste teisendamise juurde. Tulenevalt asjaolust, et logaritmi alus on 0< 1/4 <1, то от сюда следует, что знак неравенства изменится на противоположный:

3x - 8 > 16;
3x > 24;
x > 8.

Ja sellest järeldub, et saadud intervall kuulub täielikult ODZ-le ja on sellise ebavõrdsuse lahendus.

Siin on vastus, mille saime:


Mida on vaja logaritmiliste võrratuste lahendamiseks?

Proovime nüüd analüüsida, mida vajame logaritmilise ebavõrdsuse edukaks lahendamiseks?

Esiteks koondage kogu oma tähelepanu ja proovige mitte teha vigu, kui sooritate selles ebavõrdsuses antud teisendusi. Samuti tuleb meeles pidada, et selliste ebavõrduste lahendamisel tuleb vältida ebavõrdsuse laienemist ja kokkutõmbumist, mis võib viia kõrvaliste lahenduste kadumise või omandamiseni.

Teiseks, logaritmiliste võrratuste lahendamisel peate õppima loogiliselt mõtlema ja mõistma erinevust selliste mõistete vahel nagu ebavõrdsuse süsteem ja ebavõrdsuse kogum, et saaksite hõlpsasti valida ebavõrdsuse lahendusi, juhindudes selle DL-st.

Kolmandaks, sellise ebavõrdsuse edukaks lahendamiseks peab igaüks teist täpselt teadma elementaarfunktsioonide kõiki omadusi ja selgelt mõistma nende tähendust. Sellised funktsioonid hõlmavad mitte ainult logaritmilisi, vaid ka ratsionaalseid, võimsus-, trigonomeetrilisi jne, ühesõnaga kõiki neid, mida õppisite kooli algebra ajal.

Nagu näete, pole pärast logaritmilise ebavõrdsuse teema uurimist nende ebavõrdsuse lahendamisel midagi rasket, eeldusel, et olete oma eesmärkide saavutamisel ettevaatlik ja visa. Et vältida probleeme ebavõrdsuse lahendamisel, peate võimalikult palju harjutama, lahendades erinevaid ülesandeid ja samal ajal meeles pidama selliste ebavõrdsuste lahendamise põhimeetodeid ja nende süsteeme. Kui sul ei õnnestu logaritmilisi võrratusi lahendada, peaksid oma vigu hoolikalt analüüsima, et mitte tulevikus nende juurde tagasi pöörduda.

Kodutöö

Teema paremaks mõistmiseks ja käsitletava materjali koondamiseks lahendage järgmised ebavõrdsused:


Logaritmiliste võrratuste hulgast uuritakse eraldi muutuva alusega võrratusi. Neid lahendatakse spetsiaalse valemi abil, mida koolis mingil põhjusel harva õpetatakse:

log k (x) f (x) ∨ log k (x) g (x) ⇒ (f (x) − g (x)) (k (x) − 1) ∨ 0

Märkeruudu “∨” asemel võite panna mis tahes ebavõrdsuse märgi: rohkem või vähem. Peaasi, et mõlemas ebavõrdsuses on märgid samad.

Nii saame lahti logaritmidest ja taandame ülesande ratsionaalseks ebavõrdsuks. Viimast on palju lihtsam lahendada, kuid logaritmidest loobumisel võivad tekkida lisajuured. Nende ära lõikamiseks piisab, kui leida vastuvõetavate väärtuste vahemik. Kui olete logaritmi ODZ-i unustanud, soovitan tungivalt seda korrata - vaadake "Mis on logaritm".

Kõik vastuvõetavate väärtuste vahemikuga seonduv tuleb eraldi välja kirjutada ja lahendada:

f(x) > 0; g(x) > 0; k(x) > 0; k(x) ≠ 1.

Need neli ebavõrdsust moodustavad süsteemi ja peavad olema täidetud üheaegselt. Kui vastuvõetavate väärtuste vahemik on leitud, jääb üle vaid ristuda ratsionaalse ebavõrdsuse lahendusega - ja vastus on valmis.

Ülesanne. Lahendage ebavõrdsus:

Kõigepealt kirjutame välja logaritmi ODZ:

Esimesed kaks ebavõrdsust rahuldatakse automaatselt, kuid viimane tuleb välja kirjutada. Kuna arvu ruut on null siis ja ainult siis, kui arv ise on null, on meil:

x 2 + 1 ≠ 1;
x 2 ≠ 0;
x ≠ 0.

Selgub, et logaritmi ODZ on kõik arvud peale nulli: x ∈ (−∞ 0)∪(0; +∞). Nüüd lahendame peamise ebavõrdsuse:

Teeme ülemineku logaritmiliselt ebavõrdsusest ratsionaalsele. Algsel ebavõrdsusel on märk "vähem kui", mis tähendab, et saadud ebavõrdsusel peab olema ka märk "vähem kui". Meil on:

(10 − (x 2 + 1)) · (x 2 + 1 − 1)< 0;
(9 − x 2) x 2< 0;
(3–x) · (3 + x) · x 2< 0.

Selle avaldise nullid on: x = 3; x = −3; x = 0. Veelgi enam, x = 0 on teise kordsuse juur, mis tähendab, et selle läbimisel funktsiooni märk ei muutu. Meil on:

Saame x ∈ (−∞ −3)∪(3; +∞). See komplekt sisaldub täielikult logaritmi ODZ-s, mis tähendab, et see on vastus.

Logaritmiliste võrratuste teisendamine

Sageli erineb algne ebavõrdsus ülaltoodust. Seda saab hõlpsasti parandada, kasutades standardseid logaritmidega töötamise reegleid – vt “Logaritmide põhiomadused”. Nimelt:

  1. Iga arvu saab esitada logaritmina antud baasiga;
  2. Samade alustega logaritmide summa ja erinevuse saab asendada ühe logaritmiga.

Eraldi tahaksin teile meelde tuletada vastuvõetavate väärtuste vahemikku. Kuna algses võrratuses võib olla mitu logaritmi, tuleb leida neist igaühe VA. Seega on logaritmiliste võrratuste lahendamise üldine skeem järgmine:

  1. Leia iga võrratuse hulka kuuluva logaritmi VA;
  2. Vähendage ebavõrdsus standardseks, kasutades logaritmide liitmise ja lahutamise valemeid;
  3. Lahendage saadud võrratus ülaltoodud skeemi abil.

Ülesanne. Lahendage ebavõrdsus:

Leiame esimese logaritmi määratluspiirkonna (DO):

Lahendame intervallmeetodil. Lugeja nullide leidmine:

3x − 2 = 0;
x = 2/3.

Siis - nimetaja nullid:

x − 1 = 0;
x = 1.

Koordinaatide noolele märgime nullid ja märgid:

Saame x ∈ (−∞ 2/3)∪(1; +∞). Teisel logaritmil on sama VA. Kui te ei usu, võite seda kontrollida. Nüüd teisendame teise logaritmi nii, et alus on kaks:

Nagu näete, on logaritmi baasis ja ees olevad kolmed vähendatud. Saime kaks logaritmi sama alusega. Liidame need kokku:

log 2 (x − 1) 2< 2;
log 2 (x − 1) 2< log 2 2 2 .

Saime standardse logaritmilise ebavõrdsuse. Logaritmidest vabaneme valemi abil. Kuna algne ebavõrdsus sisaldab märki "vähem kui", peab ka sellest tulenev ratsionaalne avaldis olema väiksem kui null. Meil on:

(f (x) − g (x)) (k (x) − 1)< 0;
((x - 1) 2 - 2 2) (2 - 1)< 0;
x 2 - 2x + 1 - 4< 0;
x 2 - 2x - 3< 0;
(x – 3) (x + 1)< 0;
x ∈ (−1; 3).

Meil on kaks komplekti:

  1. ODZ: x ∈ (−∞ 2/3)∪(1; +∞);
  2. Vastuskandidaat: x ∈ (−1; 3).

Jääb need komplektid ristuda - saame tõelise vastuse:

Oleme huvitatud hulkade ristumiskohast, seega valime intervallid, mis on mõlemal noolel varjutatud. Saame x ∈ (−1; 2/3)∪(1; 3) - kõik punktid on punkteeritud.

Ebavõrdsust nimetatakse logaritmiliseks, kui see sisaldab logaritmilist funktsiooni.

Logaritmiliste võrratuste lahendamise meetodid ei erine, välja arvatud kaks asja.

Esiteks, liikudes logaritmilisest ebavõrdsusest sublogaritmiliste funktsioonide ebavõrdsusele, tuleks järgige saadud ebavõrdsuse märki. See järgib järgmist reeglit.

Kui logaritmilise funktsiooni alus on suurem kui $1$, siis liikudes logaritmilisest võrratusest alamfunktsioonide ebavõrdsusele säilib võrratuse märk, aga kui see on väiksem kui $1$, siis muutub see vastupidiseks. .

Teiseks on mis tahes ebavõrdsuse lahendus intervall ja seetõttu on alateraritmiliste funktsioonide ebavõrdsuse lahendamise lõpus vaja luua kahe võrratuse süsteem: selle süsteemi esimene võrratus on alamaritmiliste funktsioonide ebavõrdsus, ja teine ​​on logaritmilise ebavõrdsuse hulka kuuluvate logaritmiliste funktsioonide definitsioonipiirkonna intervall.

Harjuta.

Lahendame ebavõrdsused:

1. $\log_(2)((x+3)) \geq 3.$

$D(y): \x+3>0.$

$x \in (-3;+\infty)$

Logaritmi alus on $2>1$, seega märk ei muutu. Kasutades logaritmi definitsiooni, saame:

$x+3 \geq 2^(3),$

$x \in )