Помощью чего мы слышим. Почему мы слышим звуки? Объективные методы оценки слуха

Ревенко Артем и Исмаилов Дима

В этой проектно-исследовательской работе учащиеся изучили строение уха, природу звука и его основные характеристики, его влияние на неживые предметы и живые существа.

Скачать:

Предварительный просмотр:

Муниципальный конкурс проектно-исследовательских работ

младших школьников «Я – исследователь»

Направление: физическое

Исследовательская работа

Тема: «Почему мы слышим звуки?»

(Исследование звуковых волн)

Ревенко Артём Александрович,

учащиеся 4 класса МБОУ ООШ № 5

г.Шатуры

Руководитель: Столчнева Мария Дмитриевна,

учитель начальных классов

2012 г.

Введение.

1.1.Из истории звука.

1.2.Что такое звук?

1.3.Звук и слух. Строение уха. Почему надо беречь уши? 1.4.Распространение звука.

1.5. Ультразвуки и инфразвуки. Эхолокация в природе.

Глава 2. Моё исследование.

2.1.Образование звука.

2.2.Исследование характеристик звука: высоты, тембра, громкости.

2.3.Звуковые явления. (Опыт. Влияние громкости на неживые предметы; на живые существа).

Заключение.

Список литературы.

Приложение 1.

Приложение 2.

Введение

Пытаются шептать клочки афиш,

Пытается кричать железо крыш,

И в трубах петь пытается вода

И так мычат бессильно провода.

Е. Евтушенко

Мы живем в удивительном мире звуков. Они окружают нас повсюду. Мы слышим шум ветра и шелест листьев, журчание ручья и грохот грома, звук музыкального инструмента, пение соловья и стрекотание кузнечика, скрип двери и шум моторов.

Что такое звук? Как он возникает? Чем один звук отличается от других?

Почему мы слышим звуки? Все эти вопросы заинтересовали меня. И я решил провести исследование.

В связи с этим я поставил перед собой цель: исследовать природу звуковых волн.

Объектом изучения стали звуковые волны, а п редметом моего исследования : их физические свойства.

Гипотеза: колебания звуковых волн влияют на неживые предметы и живые существа.

Задачи:

  1. изучить литературу и подобрать материал о звуке;
  2. определить методы, с помощью которых можно исследовать звуковые волны;
  3. установить, как образуется и распространяется звук;
  4. изучить строение уха;
  5. изучить физические свойства звука: высоту, тембр, громкости;
  6. выяснить, как громкость звука влияет на неживые предметы и живые существа;
  7. подготовить необходимые материалы;
  8. провести опыты и эксперименты, проанализировать полученные результаты и сделать выводы.

Методы :

  1. обзор и анализ литературы;
  1. поведение экспериментов, опытов;
  2. работа со словарем, литературой, интернет-ресурсами;
  3. наблюдение в естественных условиях (сбор показаний), опрос;
  4. анализ различных источников информации, их сравнение с полученными результатами, обобщение.

Свое исследование я проводил в своем классе и дома на протяжении 4 месяцев, с октября. Сначала я подобрал литературу, изучил ее. Затем подобрал доступное мне оборудование для исследования. После я приступил к исследованию.

Глава 1. Удивительный мир звуков

1.1.Из истории звука

В глубокой древности звук казался людям удивительным, таинственным порождением сверхъестественных сил. Они верили, что звуки могут укрощать диких животных, сдвигать скалы и горы, преграждать путь воде, вызывать дождь, творить другие чудеса. В Древнем Египте, заметив удивительное воздействие музыки на человека, ни один праздник не обходился без ритуальных песнопений. Древние индийцы раньше других овладели высокой музыкальной культурой. Они разработали и широко использовали нотную грамоту задолго до того, как она появилась в Европе. Понять и изучить звук люди стремились с незапамятных времен. Греческий ученый и философ Пифагор, доказал, что низкие тона в музыкальных инструментах присуще длинным струнам. При укорочении струны вдвое звук ее повысится на целую октаву. Открытие Пифагора положило начало науки об акустики. Первые звуковые приборы были созданы в театрах Древней Греции и Рима: актеры вставляли в свои маски маленькие рупоры для усиления звука. Известно также применение звуковых приборов в египетских храмах, где были «шепчущие» статуи богов.

1.2.Что такое звук?

С первого класса я уже знал, что «звуки издают предметы и живые существа. Звуки мы можем передать голосом. Он бежит невидимой волной. У нас есть чудесные приборы, которые улавливают эту волну. Эти приборы уши. Внутри наше ухо очень сложное. Оно боится шума, резких, громких звуков. Уши надо беречь.

Иногда звук добегает до какого-нибудь препятствия (например, до горы, леса) и, обратно. Тогда мы слышим эхо» .

Что же такое звук?

Проведу два простых опыта.

Опыт 1 . Приложу ладонь к своей гортани, произнесу какой – либо гласный звук. Гортань начинает дрожать, колебаться. Эти колебания хорошо ощущаются ладонью. Я их не вижу, но слышу.

Опыт 2. Зажму в тисках длинную стальную линейку. Если над тисками будет выступать большая часть линейки, то, вызвав ее колебания, мы не услышим порождаемые ею волны. Но если укоротить выступающую часть линейки и тем самым увеличить частоту ее колебаний, то мы обнаружим, что линейка начнет звучать.

Исходя из опытов, я сделал вывод , что звук получается в результате колебаний. Эти волны, распространяясь в воздухе, а также внутри жидкостей и твердых тел, невидимы. Однако при определенных условиях их можно услышать.

Упругие волны, способные вызвать у человека слуховые ощущения, называются звуковыми волнами или просто звуком.

В толковом словаре Ожегова говорится, что « звук – это то, что слышится, воспринимается слухом: физическое явление, вызываемое колебательными движениями частиц воздуха или другой среды».

Рассмотрю примеры, поясняющие физическую сущность звука. Струна музыкального инструмента передает свои колебания окружающим частицам воздуха. Эти колебания будут распространяться все дальше и дальше, а достигнув уха, вызовут колебания барабанной перепонки. Я услышу звук. В каждой среде в результате взаимодействия между частицами колебания передаются все новым и новым частицам, т.е. в среде распространяются звуковые волны.

Наука, изучающая звуковые волны, называется акустикой. Акустика имеет несколько разновидностей. Так физическая акустика занимается изучением самих звуковых колебаний. Электроакустика, или техническая акустика, занимается получением, передачи, приемом и записью звуков при помощи электрических приборов. Архитектурная акустика изучает распространение звука в помещениях. Музыкальная акустика исследует природу музыкальных звуков, а также музыкальные настрой и системы. Гидроакустика (морская акустика) занимается изучением явлений, происходящих в водной среде, связанных с излучением, приемом и распространением акустических волн. Атмосферная акустика изучает звуковые процессы в атмосфере, в частности распространение звуковых волн, условие сверхдальнего распространения звука. Физиологическая акустика исследует возможности органов слуха, их устройство и действие. Она изучает образование звуков органами речи и восприятие звуков органами слуха, а также вопросы анализа и синтеза речи. Биологическая акустика рассматривает вопросы звукового и ультразвукового общения животных.

Обратившись к литературе, я узнал, что, как и любая волна, звук характеризуется амплитудой и спектром частот . Обычно человек слышит звуки, передаваемые по воздуху, в диапазоне частот от 16-20 Гц до 15-20 кГц. 20 Гц – это, пожалуй, раскаты грома, а 18 000 Гц – тончайший комариный писк.

Звук ниже диапазона слышимости человека называют инфразвуком ; выше: до 1 ГГц, - ультразвуком , от 1 ГГц - гиперзвуком . Среди слышимых звуков следует также особо выделить фонетические, речевые звуки и фонемы (из которых состоит устная речь ) и музыкальные звуки (из которых состоит музыка ).

Вывод: звук – это упругие волны, распространяющиеся в упругой среде. Человек слышит звук в диапазоне от 16-20 Гц до 15-20 кГц. Есть ультразвуки – до 1 ГГц, гиперзвуки от 1 ГГц, инфразвуки – до 16-20 Гц. Акустика изучает звуковые колебания.

1.3.Звук и слух. Строение уха. Почему надо беречь уши?

Передо мной стали вопросы: из чего состоит ухо? Почему в ушах образуется сера? Почему надо беречь уши?

Наблюдая за своими родными и близкими, я понял, что мы все по-разному слышим одни и те же звуки, для кого-то они кажутся тихими, а для других наоборот - громкими. Оказывается, человеческое ухо наиболее чувствительно к звукам с частотой от 1000 до 3000 Гц. Наибольшая острота слуха наблюдается в возрасте 15-20 лет. С возрастом слух ухудшается. У человека до 40 лет наибольшая чувствительность находится в области 3000 Гц, от 40 до 60 лет - 2000 Гц, старше 60 лет - 1000 Гц. Звуки могут отличаться один от другого по тембру. Основной тон звука сопровождается, как правило, второстепенными тонами, которые всегда выше по частоте и предают основному звуку дополнительную окраску. Они называются обертонами. Чем больше обертонов налагается на основной тон, тем «богаче» звук в музыкальном отношении. Органы слуха благодаря своему замечательному устройству легко отличают одно колебание от другого, голос близкого или знакомого человека от голосов других людей. Потому, как говорит человек, мы судим о его настроении, состоянии, переживаниях.

Природа, наделяя живые существа слухом, проявила немалую изобретательность. Органы, воспринимающие звук, расположены у них на участках весьма различных, а подчас и неожиданных: у кузнечика и сверчка, к примеру, на голенях передних ножек, у саранчи - на брюшке, у комаров - на усиках-антеннах. У позвоночных органы слуха в процессе эволюции заняли почетное место по бокам головы, а у млекопитающих появилась и развитая ушная раковина. Низшие животные довольствуются защитными складками кожи, прикрывающими слуховой проход: крокодилу такие складки помогают во время погружения под воду; у птиц - аиста, утки, воробья - аналогичную защитную роль выполняет тонкая пленка. Ушная раковина - чаще ее называют попросту ухом - у многих животных весьма подвижна. Собака прислушивается, «играя ушами» - поднимая, опуская или отводя их в стороны. Лошадь и еж, олень и заяц шевелят ушами, определяя направление звука. У африканского носорога - воронкообразные уши, они могут действовать независимо друг от друга: стараясь распознать шорохи спереди и сзади.

Строение уха (смотри рис.1, приложение 1).

Я узнал, что анатомически ухо делится на три части: наружное, среднее и внутреннее ухо.
Наружное ухо.
Выступающая часть наружного уха называется ушной раковиной, ее основу составляет полужесткая опорная ткань - хрящ. Отверстие наружного слухового прохода расположено в передней части ушной раковины, а сам проход направлен внутрь и слегка вперед. Ушная раковина концентрирует звуковые колебания и направляет их в наружное слуховое отверстие.
Оказывается, что с окружающей среды попадают не только звуки в орган, но и различные инородные тела, микробы. Поэтому в слуховом проходе постоянно выделяется секрет -
ушная сера .
Ушная сера - воскообразный секрет сальных и серных желез наружного слухового прохода. В ее функции входит защита кожи этого прохода от бактериальной инфекции и инородных частиц, например насекомых, которые могут попасть в ухо. У разных людей количество серы различно. Плотный комок ушной серы (серная пробка) может привести к нарушению проведения звука и тугоухости, поэтому уши необходимо чистить регулярно ватным тампоном.
Среднее ухо , это целый комплекс - включающий барабанную полость и слуховую (евстахиеву) трубу, относится к звукопроводящему аппарату. Тонкая плоская мембрана , называемая барабанной перепонкой, отделяет внутренний конец наружного слухового канала от барабанной полости - уплощенного, прямоугольной формы пространства, заполненного воздухом. В этой полости среднего уха находится цепочка из трех подвижно сочлененных миниатюрных косточек (слуховых косточек), которая передает колебания от барабанной перепонки во внутреннее ухо. В соответствии с формой, косточки называются молоточек, наковальня и стремя (смотри рис.2, приложение1).
Молоточек своей рукояткой прикреплен к центру барабанной перепонки при помощи связок, а его головка соединяется с наковальней, которая, в свою очередь, прикреплена к стремени. Основание стремени вставлено в овальное окно - отверстие в костной стенке внутреннего уха. Крошечные мышцы способствуют передаче звука, регулируя движение этих косточек.

Оптимальным условием для колебаний барабанной перепонки является одинаковое давление воздуха с обеих сторон.

Так и происходит благодаря тому, что барабанная полость сообщается с внешней средой через носоглотку и слуховую трубу, которая открывается в нижний передний угол полости. При глотании и зевании воздух проникает в трубу, а оттуда в барабанную полость, что позволяет поддерживать в ней давление, равное атмосферному.
Внутреннее ухо. Костная полость внутреннего уха, содержащая большое число камер и проходов между ними, называется лабиринтом. Он состоит из двух частей:

Костного лабиринта и

Перепончатого лабиринта.
Костный лабиринт - это ряд полостей, расположенных в плотной части височной кости; в нем различают три составляющие: полукружные каналы - один из источников нервных импульсов, отражающих положение тела в пространстве; преддверие; и улитку - орган слуха.

К огда звуковая волна доходит до нашего уха, она улавливается им – «влетает» в ушную раковину, или наружное ухо. Звук доходит до барабанной перепонки. Барабанная перепонка натянута сравнительно туго, и звук заставляет ее колебаться, вибрировать. За барабанной перепонкой находится среднее ухо – небольшая полость, заполненная воздухом. Когда давление в наружном ухе увеличивается, барабанная перепонка прогибается внутрь. Перепады давления в среднем ухе повторяют перепады давления в звуковой волне и передаются дальше, во внутреннее ухо. Внутреннее ухо – это полость, свернутое улиткой и заполненное жидкостью. Ухо имеет два порога слышимости: нижний и верхний. Натренированное ухо может слышать в полной тишине в лесу звук падающей листвы. Если перейти верхний порог громкости звука, то в ушах возникнет сильная боль.

В действии органов слуха большую роль играет резонанс. Основная мембрана, натянутая вдоль улитки - внутреннего уха, состоит из множества эластичных волокон, общее число которых достигает 24 000, у основания улитки они короткие (0,04мм), тонкие и натянутые, а у вершины длинные (до 0, 5) мм, более толстые и менее натянутые. Попавшие в ухо звуковые волны вызывают вынужденные колебания жидкости, заполняющей внутреннее ухо. И вследствие явления резонанса – дрожание волоконец определенной длины. Чем выше звук, тем более короткие волоконца резонируют с ним; чем сильнее звук, тем больше размах колебаний волоконец. Именно этим и объясняется способность человека воспринимать звуки. У человека диапазон воспринимаемых частот лежит в полосе от 16 Гц до 20 кГц. В то время как у кошки диапазон гораздо шире: от 60 Гц до 60 кГц. Довольно широка полоса слышимости у птиц, черепахи, лягушки, кузнечика. Чрезвычайно «тонким слухом» обладают ночные хищники.

К сожалению, не все люди могут слышать.

Нарушение слуха - полное (глухота ) или частичное (тугоухость) снижение способности обнаруживать и понимать звуки . Нарушением слуха может страдать любой организм , способный воспринимать звук . Звуковые волны различаются по частоте и амплитуде . Потеря способности обнаруживать некоторые (или все) частоты или неспособность различать звуки с низкой амплитудой , называется нарушением слуха.

http://ru.wikipedia.org/wiki/

ПРИЛОЖЕНИЕ 1

Рисунок 1.

Рисунок 2.

Рисунок 3.

Рисунок 4.

Приложение 2.

Таблица 1.

Источник шума, помещение

Уровень шума, дБ

Реакция организма на длительное акустическое воздействие

Листва, прибой,

Средний шум в квартире, классе

Успокаивает

Гигиеническая норма

Шум внутри здания на магистрали

Телевизор

Поезд (метро, на

Появляются чувство раздражения, утомляемость, головная боль

музыка

спокойно

слегка двигаются

подпрыгивают

Riana

движения нет

движения нет

двигаются медленно

Kristina Agilera Not muself tonigt

двигаются чуть-чуть

слегка подпрыгивают

активно прыгают

Ladi Gaga Telephon

движения нет

движения нет

Движение появляется только при звучании басов

Реп

Eminem

нет движения

двигаются медленно

двигаются активно

Детская песня

Мама

движения нет

ползают

слегка подпрыгивают

Классика

Рихард Вагнер Дорога в Вальхаллу

ползают

активно подпрыгивают

Вальс Штрауса

ползают

ползают, слегка подпрыгивают

активно ползают и подпрыгивают

Генриха Герца , который внёс важный вклад в развитие электродинамики . Название было учреждено Международной электротехнической комиссией в 1930 году . В 1960 году на генеральной конференции по мерам и весам это название было принято взамен ранее существовавшего термина (число циклов в секунду ).

Все процессы записи, обработки и воспроизведения звука, так или иначе, работают на один орган, которым мы воспринимаем Звуки - ухо. Без понимания того, что и как мы слышим, что нам важно, а что нет, в чем причина тех или иных музыкальных закономерностей - без этих и других мелочей невозможно спроектировать хорошую аудио аппаратуру, нельзя эффективно сжать или обработать звук. То, о чём я расскажу - лишь самые основы (Да всего описать и не получится в рамках этой публикации).
- процесс звуковосприятия еще далеко не до конца изучен, однако, изложенные здесь факты могут показаться интересными даже тем, кто знает, что такое децибел...

Немного анатомии
(устройство уха - коротко и ясно)

Снаружи мы видим так называемое внешнее ухо (ушная раковина). Затем идет канал - примерно 0.5 см в диаметре и около 3 см в длину (слуховой проход (если ухо загрязнено, страдает качество слуха)).
Затем - барабанная перепонка (мембрана), к которой присоединены косточки - среднее ухо. Эти косточки передают вибрацию барабанной перепонки далее - на другую перепонку,
во внутреннее ухо - трубку с жидкостью, около 0.2 мм диаметром и, приблизительно, 3-4 см длинной, закрученную как улитка. Смысл наличия среднего уха в том, что колебания воздуха слишком слабы, чтобы напрямую сниматься с барабанной перепонки, и среднее ухо вместе с барабанной перепонкой и перепонкой внутреннего уха составляют гидравлический усилитель - площадь барабанной перепонки во много раз больше площади перепонки (мембраны) внутреннего уха, поэтому давление (которое равно F/S) усиливается в десятки раз.
Во внутреннем ухе, по всей его длине, еще одна вытянутая мембрана, жесткая к началу уха и мягкая к концу. Каждый участок этой мембраны колеблется в определённом частотном диапазоне, низкие частоты - в мягком участке ближе к концу, самые высокие - в самом начале. Вдоль этой мембраны расположены нервы, которые воспринимают колебания и передают их в мозг, используя два принципа:
Первый - ударный принцип. Поскольку нервы еще способны передавать колебания (бинарные импульсы) с частотой до 400-450 Гц, именно этот принцип влоб используется в области низкочастотного слуха. Там сложно иначе - колебания мембраны слишком сильны и затрагивают слишком много нервов. Слегка расширенный ударный принцип позволяет воспринимать частоты до примерно 4 кГц, засчет того, что несколько (до десяти) нервов ударяют в разных фазах, складывая свои импульсы. Это хорошо тем, что мозг воспринимает информацию более полно - с одной стороны, мы всё-таки имеем легкое частотное разделение, а с другой - можем еще анализировать сами колебания, их форму и особенности, а не просто частотный спектр. Этот принцип действует на самой важной для нас части - спектре человеческого голоса. Да и вообще, до 4 кГц находится вся наиболее важная для нас информация.
Ну и второй принцип - просто местоположение возбуждаемого нерва, применяется для восприятия звуков более 4 кГц. Тут уже кроме факта нас вообще ничего не волнует - ни фаза, ни скважность... Голый спектр.
Таким образом, в области высоких частот мы имеем спектральный слух не очень высокого разрешения, а для частот близких к человеческому голосу - более полный, основанный не только на разделении спектра, а еще и на дополнительном анализе информации самим мозгом, давая более полную стерео картину.
Основное восприятие звука происходит в диапазоне от 1 до 4 кГц, корректная передача этого частотного отрезка - первое условие естественности звучания.

О чувствительности
(по мощности и частотной)
Теперь о децибелах. Я не буду с нуля объяснять, что это такое, вкратце - относительная логарифмическая мера громкости (мощности) звука, наиболее хорошо отражающая человеческое восприятие громкости, и в то же время достаточно просто вычисляемая.
В акустике принято измерять громкость в дБ SPL (Sound Pressure Level – уровень звукового давления). Ноль этой шкалы находится примерно на минимальном звуке, который слышит человек. Отсчет ведется, естественно, в положительную сторону. Человек может осмысленно слышать звуки громкостью примерно до 120 дБ SPL. При 140 дБ ощущается сильная боль, при 150 дБ наступает повреждение слуха. Нормальный разговор - примерно 60 - 70 дБ SPL. Далее, при упоминании дБ подразумевается дБ от нуля по SPL.
Чувствительность уха к разным частотам очень сильно отличается. Максимальна чувствительность в районе 1 - 4 кГц, основные тона человеческого голоса. Сигнал 3 кГц - это и есть тот звук, который слышен при 0 дБ. Чувствительность сильно падает в обе стороны - например, для звука в 100 Гц нам нужно уже целых 40 дБ (в 100 раз большая амплитуда колебаний), для 10 кГц - 20 дБ. Обычно мы можем сказать, что два звука отличаются по громкости, при разнице, примерно, в 1 дБ. Несмотря на это, 1 дБ - скорее много, чем мало. Просто у нас очень сильно компрессированное, (выровненное) восприятие громкости. Зато весь диапазон - 120 дБ - воистину огромен, по амплитуде это миллионы раз!
Кстати, увеличение амплитуды в два раза соответствует увеличению громкости на 6 дБ. Внимание! не путайте: 12 дБ - в 4 раза, но разница 18 дБ - уже 8 раз! (а не 6, как могло подуматься.) дБ - логарифмическая мера.
Аналогична по свойствам и спектральная чувствительность. Мы можем сказать, что два звука (простых тона) отличаются по частоте, если разница между ними составляет около 0.3% в районе 3 кГц, а в районе 100 Гц требуется различие уже на 4%! Для справки - частоты нот (если брать вместе с полутонами, то есть две соседние клавиши фортепьяно, включая черные) отличаются на, примерно, 6%.
В общем, в районе 1 - 4 кГц чувствительность уха по всем параметрам максимальна, и составляет не так уж и много, если брать не логарифмированные значения, с которыми приходится работать цифровой технике.
Примите на заметку - многое из того, что происходит при цифровой обработке звука, может выглядеть ужасно в цифрах, и при этом звучать неотличимо от оригинала.
При цифровом представлении звука, понятие дБ считается от нуля и вниз, в область отрицательных значений. Ноль - максимальный уровень, представимый цифровой схемой. Если, при цифровой записи, уровень входного сигнала выбран не правильно – происходит превышение максимально разрешенного уровня сигнала, все сигналы, превышающие 0 дБ, обрезаются до 0 дБ – образуются клипы - вместо синусоиды на сигналограмме возникают прямоугольники (на слух воспринимаемые как щелчки (если превышение незначительно). Для того чтобы клипов не возникало, необходимо записывать звук с небольшим запасом по уровню -3 дБ.

О фазовой чувствительности
Если говорить об органах слуха в целом - природа создала их такими, какими создала, руководствуясь прежде всего соображениями целесообразности. Фаза частот нам не важна абсолютно, так как совершенно не несет полезной информации. Фазовое соотношение отдельных частот кардинально меняется от перемещений головы, окружающей обстановки, эха, резонансов.... Эта информация никак не используется мозгом, и поэтому мы не восприимчивы к фазам частот. Надо, однако, отличать изменения фазы в малых пределах (до нескольких сот градусов) от серьезных фазовых искажений, которые могут изменить временные параметры сигналов, когда речь уже идет не об изменениях фаз, а скорее о частотных задержках - когда фазы отдельных компонент настолько варьируются, что сигнал распадается во времени, изменяет свою длительность. Например, если мы слышим только отраженный звук, эхо с другого конца в огромном зале - в некотором роде это лишь вариация фаз сигналов, но настолько сильная, что вполне воспринимается по косвенным (временным) признакам. И вообще глупо называть это изменениями фаз - грамотнее говорить о задержках.
В общем, к незначительным вариациям фаз (однако, как посмотреть), до противофазы наше ухо абсолютно не чувствительно. Но всё это касается лишь одинаковых фазовых изменений в обоих каналах! Несимметричные фазовые сдвиги очень важны, об этом - ниже.

Об объемном восприятии
Человек может воспринимать пространственное положение источника звука.
Есть два принципа стерео восприятия, которые соответствуют двум принципам передачи звуковой информации из уха в мозг (об этом
см. выше).
Первый принцип - для частот ниже 1 кГц, их слабо волнуют препятствия в виде человеческой головы - они просто огибают её. Эти частоты воспринимаются ударным способом, передавая в мозг информацию об отдельных звуковых импульсах. Временное разрешение передачи нервных импульсов позволяет использовать эту информацию для определения направления звука - если звук в одно ухо приходит раньше другого (разница порядка десятков микросекунд), мы можем засечь его
расположение в пространстве - ведь запаздывание происходит из-за того, что звуку пришлось пройти еще дополнительно расстояние до второго уха, затратив на это какое-то время. Этот фазовый сдвиг звука одного уха относительно другого и воспринимается как информация, позиционирующая звуки.
И второй принцип - используется для всех частот, но в основном - для тех, что выше 2 кГц, которые отлично затеняются головой и ушной раковиной - просто определение разницы в громкости между двумя ушами.
Еще один важный момент, который позволяет нам гораздо точнее определять местоположение звука - возможность повернуть голову и «посмотреть» на изменение параметров звучания. Достаточно буквально нескольких градусов свободы, и мы можем определить звук (источник звука) почти точно. Принято считать, что направление с легкостью определяется с точностью до одного градуса. Этот прием пространственного восприятия - то, что почти не дает сделать реалистичный объемный звук в играх - по крайней мере, до тех пор, пока наша голова не будет облеплена поворотными датчиками.. Ведь звук в играх, даже рассчитанный на современные 3д карты, не зависит от поворота нашей реальной головы, поэтому полная картина почти никогда не складывается, и, сложиться, к сожалению, не может.
Таким образом, для стерео восприятия во всех частотах важна громкость правого и левого канала, а в частотах, где это возможно, до 1 - 2 кГц, дополнительно оцениваются и относительные фазовые сдвиги. Дополнительная информация - подсознательный поворот головы и мгновенная оценка результатов.
Фазовая информация в районе 1 - 4 кГц имеет приоритет над разницей в громкости (амплитуде), хотя определенная разница уровней перекрывает фазовую разницу, и наоборот. Не совсем соответствующие или прямо противоречивые данные (например - правый канал громче левого, однако запаздывает) дополняют наше восприятие окружения - ведь эти несоответствия рождаются из окружающих нас отражающих/поглощающих поверхностей. Таким образом, в очень ограниченном объеме воспринимается характер помещения, в котором находится человек. Этому также помогают общие для обоих ушей фазовые вариации огромного уровня - задержки, эхо (реверберация).

О нотах и октавах
Гармоники
Слово «гармоника» здесь означает гармоническое колебание, или проще - синусоиду, простой тон. В аудио - технике, однако, применяют понятие - пронумерованные гармоники. Дело в том, что множество физических, акустических процессов дают дополнение какой-то определенной частоты частотами, ей кратными. Простой (основной) тон 100 Гц сопровождают гармоники 200, 300, 400 и так далее Гц. Звук скрипки, например - это почти одни сплошные гармоники, основной тон имеет лишь немного большую мощность, чем его гармонические дополнения - обертоны. Вообще говоря, характер звучания музыкального инструмента (тембр) зависит от наличия и мощностей его гармоник, тогда как основной тон определяет ноту.
Вспоминаем дальше. Октава в музыке - интервал изменения частоты основного тона в два раза. Нота ля суб-контр октавы, к примеру, имеет частоту примерно - 27.5 Гц, контр- 55 Гц. Состав гармоник этих двух разных звуков имеет много общего - в том числе это 110 Гц (ля большой октавы), 220 Гц (малой), 440 Гц (первой) - и так далее. В этом основная причина того, что одинаковые ноты разных октав звучат в унисон - складывается влияние одинаковых высших гармоник.
Дело в том, что гармоники нам обеспечены всегда - даже если музыкальный инструмент воспроизводит только один основной тон, высшие гармоники (обертоны) появятся уже в ухе, в процессе спектрального восприятия звука. Нота самой нижней октавы почти всегда включает в себя в качестве гармоник те же ноты всех вышестоящих октав.
Наше звуковосприятие почему-то устроено так, что нам приятны гармоники, и неприятны частоты, которые выбиваются из этой схемы - два звука, 1 кГц и 4 кГц, вместе будут звучать приятно - ведь это суть одна нота через две октавы, пусть и не калиброванного по стандартной шкале инструмента. Как уже упоминалось - это то, что часто встречается в природе как следствие естественных физических процессов. Но, если взять два тона 1 кГц и 3.1 кГц - будет звучать раздражающе!
Октава - понятие, полезное не только для музыкантов. Октава в акустике - это изменение частоты звука в два раза. Мы уверенно слышим примерно полных 10 октав, это на две октавы выше, чем последняя октава фортепьяно. Странное дело, но в каждой октаве содержится примерно одинаковое для нас количество информации, хотя последняя октава - это весь район с 10 до 20 кГц. В старости мы практически перестаем слышать эту последнюю октаву, и это дает потерю слуховой информации не в два раза, а всего на 10% - что не так уж и страшно. Для справки - самая высокая нота фортепьяно - около 4,186 кГц. Тем не менее, спектр звучания этого
инструмента далеко выходит за 4,186 кГц за счет гармоник, реально покрывая весь наш звуковой диапазон. Так почти с любым музыкальным инструментом - основные тона почти никогда не выходят за 5 кГц, можно быть совершенно глухим к более высоким тонам, и, тем не менее, слушать музыку...
Даже если бы и были инструменты с более высокими тонами - слышимый гармонический состав их звучания был бы очень бедным. Сами смотрите - у инструмента в 6 кГц основного тона есть только одна слышимая гармоника - 12 кГц. Этого просто мало для наполненного, приятного звучания, какой тембр мы бы ни хотели получить в результате.
Важный параметр всех звуковых схем - гармонические искажения. Почти все физические процессы приводят к их появлению, и в звукопередаче их стараются сделать минимальными, чтобы не изменять тональную окраску звука, и просто не засорять звук лишней, отягощающей информацией. Гармоники, однако, могут давать звуку и приятную окраску - например, ламповый звук - это наличие большого (сравнительно с транзисторной техникой) числа гармоник, дающих звуку приятный, теплый характер, практически не имеющий аналогов в природе.

Принципы цифрового звука
Прежде всего, сам принцип представления звука в цифровой форме предполагает уничтожение какой-то части информации в нем. Исходная, непрерывная кривая, описывающая амплитуду звуковой волны, подвергается дискретизации - разбиению на отдельные интервалы (отсчеты), внутри которых амплитуда считается постоянной; таким образом фиксируются временные характеристики волны. Затем эти мгновенные значения амплитуды еще раз разбиваются на конечное число значений - теперь уже по самой величине амплитуды - и выбирается наиболее близкое из этих дискретных значений; так фиксируются амплитудные характеристики. Если говорить по отношению к графику (осциллограмме) звуковой волны, то можно сказать, что на него накладывается некая сетка - крупная или мелкая, которая определяет точность преобразования волны в цифровую форму.
Мелкость временной сетки - частота дискретизации - определяет, прежде всего, частотный диапазон преобразуемого звука. В идеальных условиях для передачи сигнала с верхней частотой F достаточно частоты дискретизации 2F (по теореме Котельникова), в реальных же, приходится выбирать некоторый запас. Точность же представления самих значений амплитуды - разрядность отсчетов - определяет в первую очередь уровень шумов и искажений, вносимых при преобразовании. Естественно - снова для идеального
случая, поскольку шумы и искажения вносятся и другими участками схемы.
В начале 80-х, когда разрабатывалась система "компакт-диск", ориентированная для бытового применения, по результатам экспертных оценок была выбрана частота дискретизации 44.1 кГц и разрядность отсчета 16 бит (65536 фиксированных уровней амплитуды). Этих параметров достаточно для точной передачи сигналов с частотой до 22 кГц, в которые вносится дополнительный шум на уровне примерно -96 дБ.
Поток чисел (серий двоичных цифр), описывающий звуковой сигнал, называют импульсно-кодовой модуляцией или ИКМ (Pulse Code Modulation, PCM), так как каждый импульс дискретизованного по времени сигнала представляется собственным цифровым кодом.
Чаще всего применяют линейное квантование, когда числовое значение отсчета пропорционально амплитуде сигнала. Из-за логарифмической природы слуха более целесообразным было бы логарифмическое квантование, когда числовое значение пропорционально величине сигнала в децибелах, однако это сопряжено с трудностями чисто технического характера.
Временная дискретизация и амплитудное квантование сигнала неизбежно вносят в сигнал шумовые искажения. В большинстве современных цифровых звуковых систем используются стандартные частоты дискретизации 44.1 и 48 кГц, однако частотный диапазон сигнала обычно ограничивается возле 20 кГц для оставления запаса по отношению к теоретическому пределу. Также наиболее распространено 16-разрядное квантование по уровню, что дает предельное соотношение сигнал/шум около 98 дБ. В студийной аппаратуре используются более высокие разрешения - 18-, 20, 24 и 32-разрядное квантование при частотах дискретизации 56, 96 и 192 кГц. Это делается для того, чтобы сохранить высшие гармоники звукового сигнала, которые непосредственно не воспринимаются
слухом, но влияют на формирование общей звуковой картины.
Для оцифровки более узкополосных и менее качественных сигналов частота и разрядность дискретизации могут снижаться (например, в телефонных линиях применяется 7или 8-разрядная оцифровка с частотами 8..12 кГц).
Сам цифровой звук и относящиеся к нему вещи принято обозначать общим термином Digital Audio; аналоговая и цифровая части звуковой системы обозначаются терминами Analog Domain и Digital Domain.

Что такое АЦП и ЦАП?
Аналогово-цифровой и цифро-аналоговый преобразователи. Первый преобразует аналоговый сигнал в цифровое значение амплитуды, второй выполняет обратное преобразование.
В англоязычной литературе применяются термины ADC и DAC, а совмещенный преобразователь называют codec (coder-decoder).
Принцип работы АЦП состоит в измерении уровня входного сигнала и выдаче результата в цифровой форме. В результате работы АЦП непрерывный аналоговый сигнал превращается в импульсный, с одновременным измерением амплитуды каждого импульса. ЦАП получает на входе цифровое значение амплитуды и выдает на выходе импульсы напряжения или тока нужной величины, которые расположенный за ним интегратор (аналоговый фильтр) превращает в непрерывный аналоговый сигнал.
Для правильной работы АЦП входной сигнал не должен изменяться в течение времени преобразования, для чего на его входе обычно помещается схема выборки-хранения, фиксирующая мгновенный уровень сигнала и сохраняющая его в течение всего времени преобразования. На выходе ЦАП также может устанавливаться подобная схема, подавляющая влияние переходных процессов внутри ЦАП на параметры выходного сигнала.
При временной дискретизации спектр полученного импульсного сигнала в своей нижней части 0..Fa повторяет спектр исходного сигнала, а выше содержит ряд отражений (aliases, зеркальных спектров), которые расположены вокруг частоты дискретизации Fd и ее гармоник. При этом первое отражение спектра от частоты Fd в случае Fd = 2Fa располагается непосредственно за полосой исходного сигнала, и требует для его подавления аналогового фильтра (anti-alias filter) с высокой крутизной среза. В АЦП этот фильтр устанавливается на входе, чтобы исключить перекрытие спектров и их интерференцию, а в ЦАП - на выходе, чтобы подавить в выходном сигнале надтональные помехи, внесенные временной дискретизацией.

Что такое Dithering и Noise Shaping?
Методы обработки цифрового звукового сигнала, направленные на улучшение субъективного качества звучания ценой очевидного ухудшения его объективных характеристик (прежде всего - коэффициента нелинейных искажений и соотношения сигнал/шум).
Dithering (сглаживание) заключается в добавлении к сигналу небольшого количества шума (псевдослучайного цифрового сигнала) разного спектра (белый, розовый и т.п.). При этом заметно ослабляется корреляция ошибок квантования с полезным сигналом ("рассеиваются" ошибки округления) и, несмотря на некоторое увеличение шума, субъективное качество звучания заметно повышается. Уровень добавляемого шума выбирается в зависимости от задачи и колеблется от половины младшего разряда отсчета до нескольких разрядов.
Noise Shaping (формовка шума) заключается в преобразовании сильно зашумленного полезного сигнала с целью вытеснения чисто шумовых компонент в надтональную область с выделением в нижней части спектра основной энергии полезного сигнала. По существу, Noise Shaping является одним из видов PWM (Pulse Width Modulation - широтно-импульсная модуляция, ШИМ) с дискретной шириной импульса. Сигнал, обработанный этим методом, требует обязательной фильтрации с подавлением высоких частот - это выполняется либо цифровым, либо аналоговым способом.
Основное применение Noise Shaping находит в области представления цифровых сигналов отсчетами меньшей разрядности с повышенной частотой следования. В delta-sigma ЦАП для повышения частоты следования отсчетов увеличивается в десятки раз частота дискретизации, на которой из исходных многоразрядных отсчетов формируются серии отсчетов разрядностью 1..3. Низкочастотная часть спектра потока этих отсчетов с высокой точностью повторяет спектр исходного сигнала, а высокочастотная
содержит в основном чистый шум.

В случае преобразования цифрового сигнала к отсчетам более низкой разрядности на той же частоте дискретизации Noise Shaping выполняется вместе с операцией Dithering"а. Поскольку в этом случае повышение частоты дискретизации невозможно, вместо этого спектр добавляемого шума формируется таким образом, чтобы его низко и среднечастотная часть максимально точно повторяла слабую часть сигнала, заключенную в отсекаемых младших разрядах отсчетов. Благодаря этому основная энергия шума вытесняется в верхнюю часть рабочего диапазона частот, а в наиболее слышимой области остаются вполне разборчивые следы слабого сигнала,
который иначе оказался бы полностью уничтоженным. Несмотря на то, что объективные искажения сохраненного таким образом слабого сигнала очень велики, его субъективное восприятие остается вполне приемлемым, позволяя воспринимать на слух компоненты, уровень которых меньше младшего разряда отсчета.
По существу, Dithering и Noise Shaping являются частными случаями одной технологии - с той разницей, что в первом случае используется белый шум с равномерным спектром, а во втором - шум со спектром, специально сформированным под конкретный сигнал. Данная технология приводит к "нестандартному" использованию цифрового формата, основанному на особенностях человеческого слуха.

Клетки, воспринимающие звуки, находятся в перепончатой капсуле — улитке, спрятанной в глубине черепа. Улитка — это спирально закрученная трубка, заполненная жидкостью. Вместе с органом равновесия — тремя полукружными каналами — улитка образует так называемый лабиринт. Овальное окно соединяет улитку со средним ухом, костной полостью, лежащей в преддверии улитки. Это окно затянуто тонкой кожистой пленкой. Она реагирует на любые колебания воздуха, уловленные ушной раковиной и попавшие в наружный слуховой проход. Расскажем подробнее о том, как это происходит.

Сначала колебания воздуха заставляют вибрировать барабанную перепонку — тончайшую пластинку, перегораживающую наружный слуховой проход. Далее вибрация передается по крохотным слуховым косточкам: молоточку, наковальне и стремечку. Эти косточки, словно мостик, протянулись по всему среднему уху, соединяя барабанную перепонку с улиткой. Вот и получается, что пленка, закрывающая овальное окно, реагирует на любые колебания воздуха. Далее вибрации передаются жидкости, заполняющей улитку. Перекатывающиеся по ней волны раздражают слуховые клетки внутреннего уха. Головной мозг улавливает эти раздражения и распознает в них звуки. К сказанному добавим то же, что мы говорили и о зрении. Природа снабдила нас двумя ушами, поэтому мы можем определить, откуда до нас долетел звук. Итак, у нас есть не только пространственное зрение, но и объемный слух. Там же, в лабиринте, рядом с улиткой, протянулись три полукружных канала: горизонтальный и два вертикальных, причем один из них выгнут вперед, а другой — вбок. Таким образом, каналы расположены в трех взаимно перпендикулярных плоскостях. Это и есть вестибулярный аппарат, или орган равновесия.

Звуковые волны, распространяющиеся в воздухе, проделают сложный путь, прежде чем мы воспримем их. Сначала они проникают в ушную раковину и заставляют вибрировать барабанную перепонку, замыкающую наружный слуховой проход. Слуховые косточки доносят эти колебания до овального окна внутреннего уха. Пленка, которая закрывает окно, передает вибрации заполняющей улитку жидкости. Наконец колебания достигают слуховых клеток внутреннего уха. Головной мозг воспринимает зги сигналы и распознает в них шумы, звуки, музыку, речь.

Когда человек меняет положение тела, полукружные каналы — дугообразные трубочки тоже движутся вместе с ним, тогда как жидкость, заполняющая их, инерционна, она не поспевает за нашими движениями и, следовательно, смещается относительно стенок канала. Специальные клетки —рецепторы следят за перемещениями жидкости в полукружных каналах. Обо всем замеченном они сообщают головному мозгу, и тот обрабатывает поступившую информацию. Рецепторные клетки органа равновесия погружены в жидкость, заполняющую внутреннее ухо. Они фиксируют любые ее движения и извещают о них мозжечок, который собирает и сопоставляет все эти сообщения. После этого все органы тела получают нужную информацию и различные приказы, что и помогает человеку поддерживать равновесие. О результатах тут же сообщается в большой мозг.

Во внутреннем ухе вплотную друг к другу располагаются орган слуха (улитка) и орган равновесия (лабиринт). В улитке тонкая пленка — мембрана преобразует звуковые волны в волновые движения жидкости. Волны жидкости посредством сложного механизме возбуждают слуховые клетки. Лабиринт, расположенный позади улитки, фиксирует любое движение человека.

Слух является одним из важных органов чувств для всех обитателей планеты, с его помощью многие животные определяют местонахождение своего врага. Все стихийные бедствия также...

Слух является одним из важных органов чувств для всех обитателей планеты, с его помощью многие животные определяют местонахождение своего врага. Все стихийные бедствия также сопровождаются определенными звуками, которые не всегда доступы человеческому уху, но на которые безошибочно реагируют животные. Человек находится в постоянном окружении звуков, многие из них проходят мимо сознания. Слух настроен таким образом, что четко воспринимаются мозгом только жизненно важные сигналы, не очень важные игнорируются. Звуки могут по-разному воздействовать на восприятие, одни нравятся, другие раздражают, многие из них способствуют созданию в воображении тех или иных визуальных образов.

Особенности восприятия звуков

Человеческий организм отличается сложным устройством, ухо не является исключением. Строение органов слуха позволяет преобразовывать и передавать звуки для распознавания в мозг, все эти процессы происходят преимущественно в височных долях. В мозгу определяется громкость, высота, направление происхождения и другие характеристики звука. Оценка ситуации производится на основе информации, полученной из обоих ушей одновременно. Внутри уха хранятся определенные шаблоны уже распознанных звуков, за счет них обеспечивается правильная сортировка информации и определение ее первоисточника.

Известно, что скорость распознавания знакомых звуков (голосов близких людей, сигналов опасности) намного выше, по сравнению с незнакомыми звуками. При ухудшении слуха мозг начинает получать недостоверные данные, что приводит к ошибкам в распознавании информации. За слух отвечают не только соответствующие органы, но и мозг, правильное распознавание звуков достигается только за счет слаженной работы этих органов.

Строение органов слуха

Слуховой анализатор состоит из четырех частей:

  1. Наружное ухо, в данную категорию относятся следующие органы: барабанная перепонка, ушная раковина, слуховой проход. Барабанная перепонка выполняет функцию изоляции слухового прохода от окружающей среды. Длина слухового прохода составляет 2,5 см, он имеет изогнутую форму, его поверхность покрыта железами, выделяющими ушную серу и небольшими волосками. Слуховой проход выполняет функцию поддержания необходимого уровня температуры и влажности внутри уха.
  2. Среднее ухо – в это понятие входит компонент слухового анализатора, орган расположен за барабанной перепонкой и наполнена воздухом, с носоглоткой соединяется евстахиевой трубой. Евстахиева труба — это закрытый в обычном состоянии узкий хрящевой канал, который открывается при совершении глотательных движений, после чего пространство заполняется воздухом. Внутри среднего уха находятся три небольшие слуховые косточки: молоточек, наковальня и стремя. Молоточек соединяется со стременем, которое соединяется уже с улиткой во внутреннем ухе. Барабанная перепонка находится в постоянном движении под воздействием звуков, ее колебания передаются на слуховые косточки.
  3. Внутреннее ухо представляет собой несколько структур, за слух отвечает только улитка. Улитка получила свое название из-за спиральной формы, орган оснащен тремя каналами, заполненными лимфатическими жидкостями. Состав жидкости в среднем канале существенно отличается от остальных. Непосредственно за слух отвечает расположенный в среднем ухе Кортиев орган, он состоит из тысяч мельчайших волосков, улавливающих колебания, создаваемые движущейся по каналу жидкостью. В этом же месте генерируются электрические импульсы, передаваемые в кору мозга. Каждая волосовая клетка реагирует на определенный звук, при ее гибели человек перестает воспринимать звук, за который она отвечала.

Слуховые проводящие пути

Слуховые пути представляют собой совокупность волокон, проводящих нервные импульсы от улитки дослуховых центров, за счет них происходит восприятие звука мозгом. Расположены эти слуховые центры в височных долях головного мозга, время, за которое звук поступает через внешнее ухо к мозгу, составляет 10 миллисекунд.

Как мы слышим

Звуковые волны перед тем как быть распознанными мозгом, проделывают долгий путь. Колебания воздуха заставляют вибрировать барабанную перепонку, после чего звук передается на протянутые через все среднее ухо слуховые косточки, соединяющие улитку и барабанную перепонку. На следующем этапе колебания передаются на заполняющую улитку жидкость, в результате чего раздражаются клетки внутреннего уха. Мозг улавливает эти раздражения и распознает речь, шумы, музыку и т.д. За направление, откуда идет звук, отвечают полукружные каналы, расположенные в лабиринте в трех перпендикулярных друг другу областях. Эти каналы называют еще вестибулярным аппаратом или органом равновесия.

При изменении положения тела полукружные каналы также перемещаются, заполняющая их инерционная жидкость вследствие инерционности не успевает за движениями и смещается относительно стенок канала. Специальные рецепторы следят за всеми перемещениями жидкости, информация о всех наблюдениях поступает в мозг.

Рецепторные клетки вестибулярного аппарата погружены в заполняющую внутреннее ухожидкость, информация о всех движениях поступает в мозжечок, в котором осуществляется сбор и сопоставление всех данных. После этого во все системы организма направляются команды, позволяющие поддерживать равновесие. Информация о результатах поступает в головной мозг.

Индивидуальные факторы

Человек обладает удивительной способностью воспринимать не только звуки, но и интонацию. Выводы о том или ином звуки формируются на основании собственных ощущений, на восприятие оказывают влияние следующие факторы:

  • чувствительность;
  • восприимчивость;
  • особенности центральной нервной системы.

Маленькие дети распознают незнакомого человека именно по интонации, это происходит за счет того, что у малышей доминирует эмоционально-образное мышление, любая речь воспринимается в первую очередь эмоционально. Интонация позволяет определить настроение человека, насколько он грустный или веселый. Механизм распознавания интонации базируется на подсознании, человек даже не задумывается об этом.

Многие женщины больше значения придают именно интонации речи, а не ее содержанию. В первую очередь внимание уделяется не тому, что сказал собеседник, а как он сказал, так как смысл по-разному произнесенного предложения отличается. Стоит отметить, что способностью правильно распознавать информацию обладают не все люди, иногда собеседнику могут приписываться собственные эмоции. Мужчины менее чувствительны и эмоциональны, для них большую важность имеет содержание фразы, а не интонация.

Многих из нас иногда интересует простой физиологический вопрос, касающийся того, как мы слышим. Давайте рассмотрим, из чего же состоит наш орган слуха и как происходит его работа.

Прежде всего, отметим, что слуховой анализатор имеет четыре части:

  1. Наружное ухо. К нему относят слуховой привод, ушную раковину, а также барабанную перепонку. Последняя служит для изоляции внутреннего конца слухового провода от окружающей среды. Что касается слухового прохода, то он имеет совершенно изогнутую форму длиной около 2,5 сантиметров. На поверхности слухового прохода имеются железы, а также она покрыта волосками. Именно эти железы и выделяют ушную серу, которую мы вычищаем по утрам. Также слуховой проход необходим для поддержания необходимой влажности и температуры внутри уха.
  2. Среднее ухо. Та составляющая слухового анализатора, которая находится за барабанной перепонкой и заполнена воздухом, называется средним ухом. Оно соединяется при помощи евстахиевой трубы с носоглоткой. Евстахиева труба представляет собой достаточно узкий хрящевой канал, который в обычном состоянии закрыт. Когда мы совершаем глотательные движения, он открывается и через него в полость поступает воздух. Внутри среднего уха расположены три маленькие слуховые косточки: наковальня, молоточек и стремя. Молоточек при помощи одного конца соединяется со стременем, а оно уже с литкой во внутреннем ухе. Под действием звуков барабанная перепонка находится в постоянном движении, а слуховые косточки уже дальше передают её колебания внутрь. Она является одним из важнейших элементов, которое необходимо изучить при рассмотрении того, какое строение уха человека
  3. Внутреннее ухо. В этой части слухового ансамбля имеется сразу несколько структур, однако слух контролирует только одна из них – улитка. Такое название она получила из-за своей спиральной формы. Она имеет три канала, которые заполнены лимфатическими жидкостями. В среднем канале жидкость значительно отличается по составу от остальных. Тот орган, который отвечает за слух, называется Кортиев орган и расположен в среднем канале. Он состоит из несколько тысяч волосков, улавливающих колебания, которые создаёт жидкость, движущаяся по каналу. Здесь же генерируются электрические импульсы, передающиеся затем в кору головного мозга. Определенная волосковая клетка реагирует на особый вид звука. Если же происходит так, что волосковая клетка гибнет, то человек перестаёт воспринимать тот или иной звук. Также для того, чтобы понять, как человек слышит, следует рассмотреть еще и слуховые проводящие пути.

Слуховые пути

Ими являются совокупность волокон, которые проводят нервные импульсы от самой улитки и до слуховых центров вашей головы. Именно благодаря путям наш мозг воспринимает тот или иной звук. Находятся слуховые центры в височных долях мозга. Звук, который проходит через внешнее ухо к головному мозгу продолжается около десяти миллисекунд.

Как мы воспринимаем звук

Человеческое ухо перерабатывает получаемые из окружающей среды звуки в специальные механические колебания, которые потом преобразовывают движения жидкости в улитке в электрические импульсы. Они по путям центральной слуховой системы переходят в височные части мозга, чтобы затем быть распознанными и обработанными. Теперь уже промежуточные узлы и сам головной мозг извлекает некую информацию относительно громкости и высоты звучания, а также друге характеристики, такие как время улавливания звука, направление звука и другие. Таким образом, мозг может воспринимать полученную информацию от каждого уха по очереди или совместно, получая единое ощущение.

Известно, что внутри нашего уха хранятся некие «шаблоны» уже изученных звуков, которые наш мозг распознал. Именно они помогают мозгу правильно сортировать и определять первоисточник информации. Если звук снижается, то мозг соответственно начинает получать неправильную информацию, что может привести к неправильному толкованию звуков. Но не только звуки могут искажаться, со временем головной мозг тоже подвергается неправильной трактовке тех или иных звуков. Результатом может оказаться неправильная реакция человека или неверная трактовка информации. Чтобы правильно слышать и достоверно трактовать услышанное, нам понадобится синхронная работа, как мозга, так и слухового анализатора. Именно поэтому можно отметить, что человек слышит не только ушами, но и головным мозгом.

Таким образом, строение уха человека достаточно сложное. Только согласованная работа всех частей органа слуха и головного мозга позволит нам правильно понимать и трактовать услышанное.