Обмен и функции железа в организме. Метаболизм, распределение, обмен и депонирование железа в организме

В.В.Долгов, С.А.Луговская,
В.Т.Морозова, М.Е.Почтарь
Российская медицинская академия
последипломного образования

Железо является необходимым биохимическим компонентом в ключевых процессах метаболизма, роста и пролиферации клеток. Исключительная роль железа определяется важными биологическими функциями белков, в состав которых входит этот биометалл. К наиболее известным железосодержащим белкам относятся гемоглобин и миоглобин.

Помимо последних, железо находится в составе значительного количества ферментов, участвующих в процессах энергообразования (цитохромы), в биосинтезе ДНК и делении клеток, детоксикации продуктов эндогенного распада, нейтрализующих активные формы кислорода (пероксидазы, цитохромоксидазы, каталазы). В последние годы установлена роль железосодержащих белков (ферритин) в реализации клеточного иммунитета, регуляции кроветворения.

Вместе с тем железо может быть исключительно токсичным элементом, если присутствует в организме в повышенных концентрациях, превышающих емкость железосодержащих белков. Потенциальная токсичность свободного двухвалентного железа (Fе +2) объясняется его способностью запускать цепные свободнорадикальные реакции, приводящие к перекисному окислению липидов биологических мембран и токсическому повреждению белков и нуклеиновых кислот.

Общее количество железа в организме здорового человека составляет 3,5-5,0 г. Оно распределено следующим образом (табл. 3).

Обмен железа в организме человека достаточно экономичен. Постоянно происходит обмен железа между сохраняемым и активно метаболизируемым пулами (рис. 12).

Обмен железа в организме состоит из нескольких этапов: всасывание в желудочно-кишечном тракте, транспорт, внутриклеточный метаболизм и депонирование, утилизация и реутилизация, экскреция из организма.

Наиболее простая схема метаболизма железа представлена на рис. 13.

Всасывание железа

Основным местом всасывания железа является тонкий кишечник. Железо в пище содержится в основном в форме Fе +3 , но лучше всасывается в двухвалентной форме Fе +2 . Под воздействием соляной кислоты желудочного сока железо высвобождается из пищи и превращается из Fе +3 в Fе +2 . Этот процесс ускоряется аскорбиновой кислотой, ионами меди, которые способствуют всасыванию железа в организме. При нарушении нормальной функции желудка абсорбция железа в кишечнике ухудшается. До 90% железа всасывается в двенадцатиперстной кишке и начальных отделах тощей кишки. При дефиците железа зона всасывания расширяется дистально, захватывая слизистую верхнего отдела подвздошной кишки, что обеспечивает усиление его абсорбции.

Молекулярные механизмы всасывания железа изучены недостаточно. Определено несколько специфических белков, содержащихся в энтероците, способствующих всасыванию железа: мобилферрин, интегрин и ферроредуктаза. Свободное неорганическое железо или геминовое железо (Fе +2) поступает в энтероциты по градиенту концентрации. Основной барьер для железа, по-видимому, не участок щеточной каймы энтероцита, а мембрана между энтероцитом и капилляром, где присутствует специфический переносчик двухвалентных катионов (divalent cation transporter 1 - DCT1), связывающий Fе 2+ . Данный белок синтезируется только в криптах двенадцатиперстной кишки. При сидеропении синтез его увеличивается, что приводит к увеличению скорости всасывания алиментарного железа. Присутствие высоких концентраций кальция, являющегося конкурентным ингибитором DСТ1, снижает всасывание железа.

В энтероцитах содержатся трансферрин и ферритин, которые регулируют в них абсорбцию железа. Между трансферрином и ферритином существует динамическое равновесие по связыванию железа. Трансферрин связывает железо и переносит его к мембранному переносчику. Регуляция активности мембранного переносчика осуществляется апоферритином (белковая часть ферритина) (рис. 14). В случае, когда организму не требуется железо, происходит избыточный синтез апоферритина для связывания железа, которое задерживается в клетке в комплексе с ферритином и удаляется со слущивающимся кишечным эпителием. Наоборот, при дефиците железа в организме, синтез апоферритина снижен (нет необходимости запасать железо), одновременно увеличивается перенос железа DCT1 через мембрану энтероцит-капилляр.

Таким образом, транспортная система энтероцитов кишечника способна поддерживать оптимальный уровень абсорбции железа, поступающего с пищей.

Транспорт железа в крови

Железо в сосудистом русле соединяется с трансферрином - гликопротеид с Мм 88 кДа, синтезируется в печени. Трансферрин связывает 2 молекулы Fе +3 . В физиологических условиях и при дефиците железа только трансферрин важен как железотранспортирующий белок; с гаптоглобином и гемопексином транспортируется исключительно гем. Неспецифическое связывание железа с другими транспортными белками, в частности альбумином, наблюдается при перегрузке железом при высоком уровне насыщения трансферрина. Биологическая функция трансферрина заключается в его способности легко образовывать диссоциирующие комплексы с железом, что обеспечивает создание нетоксического пула железа в кровотоке, который доступен и позволяет распределять и депонировать железо в организме.Металлосвязывающий участок молекулы трансферрина не является строго специфичным для железа. Трансферрин может связывать также хром, медь, магний, цинк, кобальт, однако сродство этих металлов ниже, чем железа.

Основным источником сывороточного пула железа (трансферрин-связанного железа) является поступление его из ретикулоэндотелиальной системы (РЭС - печень, селезенка), где происходит распад старых эритроцитов и утилизация освобождающегося железа. Небольшое количество железа поступает в плазму при абсорбции его в тонком кишечнике.

В норме только треть трансферрина насыщена железом.

Внутриклеточный метаболизм железа

Большинство клеток, в том числе эритрокариоциты и гепатоциты, содержат на мембране рецепторы к трансферрину, необходимые для поступления железа в клетку. Трансферриновый рецептор - трансмембранный гликопротеин, состоящий из 2 идентичных полипептидных цепей, связанных дисульфидными мостиками.

Комплекс Fе 3+ - трансферрин попадает в клетки с помощью эндоцитоза (рис. 15). В клетке ионы железа освобождаются, а комплекс трансферрин-рецептор расщепляется, в результате чего рецепторы и трансферрин независимо возвращаются на поверхность клетки. Внутриклеточный свободный пул железа играет важную роль в регуляции пролиферации клетки, синтезе геминовых белков, экспрессии трансферриновых рецепторов, синтезе активных радикалов кислорода и др. Неиспользуемая часть Fе хранится внутриклеточно в молекуле ферритина в нетоксичной форме. Эритробласт может одновременно присоединить до 100 000 молекул трансферрина и получить 200 000 молекул железа.

Экспрессия трансферриновых рецепторов (СD71) зависит от потребности клетки в железе. Определенная часть рецепторов к трансферрину в виде мономеров сбрасывается клеткой в сосудистое русло, образуя растворимые трансферриновые рецепторы, способные связывать трансферрин. При перегрузке железом число клеточных и растворимых рецепторов к трансферрину снижается. При сидеропении лишенная железа клетка реагирует повышенной экспрессией трансферриновых рецепторов на своей мембране, увеличением растворимых трансферриновых рецепторов и снижением количества внутриклеточного ферритина. Установлено, что чем выше плотность экспрессии трансферриновых рецепторов, тем выраженнее пролиферативная активность клетки. Таким образом, экспрессия рецепторов трансферрина зависит от двух факторов - количества депонированного железа в составе ферритина и пролиферативной активности клетки.

Депонирование железа

Основными формами депонированного железа являются ферритин и гемосидерин, которые связывают "избыточное" железо и откладываются, практически, во всех тканях организма, но особенно интенсивно в печени, селезенке, мышцах, костном мозге.

Ферритин - комплекс, состоящий из гидрата закиси Fе +3 и белка апоферритина, представляет собой полукристаллическую структуру (рис. 16). Молекулярная масса апоферритина 441 кД, максимальная емкость молекулы около 4300 FеООН; в среднем одна молекула ферритина содержит около 2000 атомов Fе +3 .

Апоферритин покрывает в виде оболочки ядро из гидроксифосфата железа. Внутри молекулы (в ядре) содержится 1 или несколько кристаллов FеООН. Молекула ферритина по форме и виду в электронном микроскопе напоминает вирус. Она содержит 24 однотипных цилиндрических субъединицы, образующих сферическую структуру с внутренним пространством диаметром приблизительно 70 А, сфера имеет поры диаметром 10 А. Ионы Fе +2 диффундируют через поры, окисляются до Fе +3 , превращаются в FеООН и кристаллизируются. Железо может мобилизоваться из ферритина при участии супероксидрадикалов, образующихся в активированных лейкоцитах.

Ферритин содержит примерно 15-20% общего железа в организме. Молекулы ферритина растворимы в воде, каждая из них может аккумулировать до 4500 атомов железа. Железо высвобождается из ферритина в двухвалентной форме. Ферритин локализуется преимущественно внутриклеточно, где играет важную роль в кратковременном и длительном депонировании железа, регуляции клеточного метаболизма и детоксикации избытка железа. Предполагается, что основными источниками сывороточного ферритина являются моноциты крови, макрофаги печени (клетки Купфера) и селезенки.

Ферритин, циркулирующий в крови, практически не участвует в депонировании железа, однако концентрация ферритина в сыворотке в физиологических условиях прямо коррелирует с количеством депонированного железа в организме. При дефиците железа, которое не сопровождается другими заболеваниями, так же, как при первичной или вторичной перегрузке железом, показатели ферритина в сыворотке дают достаточно точное представление о количестве железа в организме. Поэтому в клинической диагностике ферритин должен использоваться в первую очередь как параметр, оценивающий депонированное железо.

Таблица 4. Лабораторные показатели нормального обмена железа
Сывороточное железо
Мужчины: 0,5-1,7 мг/л (11,6-31,3 мкмоль/л)
Женщины: 0,4-1,6 мг/л (9-30,4 мкмоль/л)
Дети: до 2 лет 0,4-1,0 мг/л (7-18 мкмоль/л)
Дети: 7-16 лет 0,5-1,2 мг/л (9-21,5 мкмоль/л)
Общая железосвязывающая способность (ОЖСС) 2,6-5,0 г/л (46-90 мкмоль/л)
Трансферрин
Дети (3 мес. - 10 лет) 2,0-3,6 мг/л
Взрослые 2-4 мг/л (23-45 мкмоль/л)
Пожилые (старше 60 лет) 1,8-3,8 мг/л
Насыщение трансферрина железом (НТЖ) 15-45%
Ферритин сыворотки крови
Мужчины: 15-200 мкг/л
Женщины: 12-150 мкг/л
Дети: 2-5 месяцев 50-200 мкг/л 0,5-1
Дети: 6 лет 7-140 мкг/л

Гемосидерин по структуре мало отличается от ферритина. Это ферритин в макрофаге в аморфном состоянии. После того как макрофаг поглощает молекулы железа, например, после фагоцитоза старых эритроцитов, немедленно начинается синтез апоферритина, который накапливается в цитоплазме, связывает железо, образуя ферритин. Макрофаг насыщается железом в течение 4 ч, после чего в условиях перегрузки железом в цитоплазме молекулы ферритина агрегируют в мембранно-связанные частицы, известные как сидеросомы. В сидеросомах молекулы ферритина кристаллизуются (рис. 17), формируется гемосидерин. Гемосидерин "упакован" в лизосомах и включает комплекс, состоящий из ферритина, окисленных остатков ли-пидов и других компонентов. Гранулы гемосидерина представляют собой внутриклеточные отложения железа, которые выявляются при окраске цитологических и гистологических препаратов по Перлсу. В отличие от ферритина гемосидерин не растворим в воде, поэтому железо гемосидерина с трудом подлежит мобилизации и практически не используется организмом.

Выведение железа

Физиологические потери железа организмом практически неизменны. За сутки из организма мужчины теряется около 1 мг железа с мочой, потом, при стрижке ногтей, волос, слущивающимся эпителием кожи. Кал содержит как невсосавшееся железо, так и железо, выделяющееся с желчью и в составе слущивающегося эпителия кишечника. У женщин наибольшая потеря железа происходит с менструацией. В среднем потеря крови за одну менструацию составляет около 30 мл, что соответствует 15 мг железа (за сутки женщина теряет от 0,8 до 1,5 мг железа). Исходя из этого, суточная потребность в железе у женщин детородного возраста увеличивается до 2-4 мг в зависимости от объема кровопотери.

Согласно современным представлениям, наиболее адекватными тестами для оценки метаболизма железа в организме являются определение уровня железа, трансферрина, насыщения трансферрина железом, ферритина, содержания растворимых трансферриновых рецепторов в сыворотке.

БИБЛИОГРАФИЯ [показать]

  1. Беркоу Р. Руководство по медицине The Merck manual. - М.: Мир, 1997.
  2. Руководство по гематологии / Под ред. А.И. Воробьева. - М.: Медицина, 1985.
  3. Долгов В.В., Луговская С.А., Почтарь М.Е., Шевченко Н.Г. Лабораторная диагностика нарушений обмена железа: Учебное пособие. - М., 1996.
  4. Козинец Г.И., Макаров В.А. Исследование системы крови в клинической практике. - М.: Триада-Х, 1997.
  5. Козинец Г.И. Физиологические системы организма человека, основные показатели. - М., Триада-Х, 2000.
  6. Козинец Г.И., Хакимова Я.Х., Быкова И.А. и др. Цитологические особенности эритрона при анемиях. - Ташкент: Медицина, 1988.
  7. Маршалл В.Дж. Клиническая биохимия. - М.-СПб., 1999.
  8. Мосягина Е.Н., Владимирская Е.Б., Торубарова Н.А., Мызина Н.В. Кинетика форменных элементов крови. - М.: Медицина, 1976.
  9. Рябое С.И., Шостка Г.Д. Молекулярно-генетические аспекты эритропоэза. - М.: Медицина, 1973.
  10. Наследственные анемии и гемоглобинопатии / Под ред. Ю.Н. Токарева, С.Р. Холлан, Ф. Корраля-Альмонте. - М.: Медицина, 1983.
  11. Троицкая О.В., Юшкова Н.М., Волкова Н.В. Гемоглобинопатии. - М.: Изд-во Российского университета дружбы народов, 1996.
  12. Шиффман Ф.Дж. Патофизиология крови. - М.-СПб., 2000.
  13. Baynes J., Dominiczak M.H. Medical Biochemistry. - L.: Mosby, 1999.

Источник : В.В.Долгов, С.А.Луговская, В.Т.Морозова, М.Е.Почтарь. Лабораторная диагностика анемий: Пособие для врачей. - Тверь: "Губернская медицина", 2001

Метаболизм железа и дефицит железа.

Для оценки эффективности, безопасности и удобства применения различных препаратов железа, включая Мальтофер ® , для лечения железодефицитной анемии, необходимо рассмотреть метаболизм железа в организме и факторы, вызывающие железодефицитную анемию.

1.1. Эритропоэз

Необходимое количество эритроцитов, циркулирующих в кровяном русле, поддерживается путем контроля их образования, а не продолжительности жизни. Клетки крови развиваются из стволовых клеток, расположенных в костном мозге, и дифференцирующихся в лимфоциты, тромбоциты, гранулоциты и эритроциты. Их производство контролирует механизм обратной связи, и до тех пор, пока уже образованные клетки не созреют или не выйдут из костного мозга в кровоток, новые клетки не развиваются, чтобы их заменить (Danielson и Wirkstrom, 1991). Эритропоэтин (ЭПО), вырабатываемый почками гормон, играет важную роль на этапе развития будущих эритроцитов. ЭПО, возможно, взаимодействует со специфическими рецепторами на поверхности эритроидных стволовых клеток и стимулирует их превращение в пронормобласты, самую раннюю стадию развития эритроцитов, которые могут быть обнаружены при исследовании костного мозга. На следующем этапе, ЭПО стимулирует непрерывное развитие красных кровяных клеток путем усиления синтеза гемоглобина. Образовавшиеся ретикулоциты остаются в костном мозге около трех дней перед тем, как попасть в кровяное русло, где они приблизительно через 24 часа теряют свое ядро, митохондрии, рибосомы и приобретают хорошо знакомую двояковогнутую форму эритроцитов.

Таблица 1-1

Распределение железа в организме взрослого человека. (Danielson с соавторами, 1996).

1.2. Метаболизм железа.

1.2.1. Обмен железа.

У взрослого здорового человека в среднем содержится около 3-4 г железа (40-50 мг Fe/кг массы тела). Около 60 % (2,4 г) всего железа находится в гемоглобине, а примерно 30% железа входит в состав ферритина - депо железа. Депо железа - величина непостоянная, и определяется разницей между поступившим и выделенным из организма железом. Около 9% железа находится в миоглобине, белке, переносящем кислород в мышцах. Приблизительно 1% железа входит в состав ферментов, таких как цитохромы, каталазы, пероксидазы и др. Эти данные суммированы в Табл. 1-1 и представлены на Рис. 1-1.

Метаболизм железа в организме представляет один из самых высокоорганизованных процессов, при котором практически все железо, высвобождающееся при распаде гемоглобина и других железосодержащих белков, вновь утилизируется. Поэтому, несмотря на то, что ежедневно абсорбируется и выводится лишь очень малое количество железа, его метаболизм в организме очень динамичный (Aisen, 1992; Worwood, 1982).

Рисунок 1-1

Обмен железа. Схематическая иллюстрация обмена железа в организме. ЭПО: Эритропоэтин; РЭК: Ретикулоэндотелиальные клетки. (Danielson с соавторами, 1996)

1.2.2. Всасывание железа

Способность организма выводить железо строго ограничена. Таким образом, процесс всасывания железа является основным в поддержании гомеостаза железа.

В целом, только малая часть железа, содержащегося в продуктах, абсорбируется. Количество всосавшегося железа определяется меж- и внутри индивидуальными различиями (Chapman и Hall, 1995).

Кальций подавляет абсорбцию как гемового, так и негемового железа. Наиболее вероятно, что данный эффект осуществляется на общем транспортном этапе в клетках кишечника.

Железо всасывается как в виде гема (10% поглощаемого железа), так и в негемовой (9%) форме с помощью ворсинок верхней части тонкого кишечника. Сбалансированная ежедневная диета содержит около 5-10 мг железа (гемового и негемового), но всасывается лишь 1-2 мг. Гемовое железо содержится лишь в небольшой части пищевого рациона (мясные продукты). Оно очень хорошо всасывается (на 20-30%) и на его усвоение не влияют другие компоненты пищи. Большая часть пищевого железа -негемовое (оно содержится в основном в листовых овощах). Степень его усвоения определяется рядом факторов, которые могут, как мешать, так и способствовать абсорбции железа. Большая часть трехвалентного железа Fe (III) образует нерастворимые соли, например, c фитином, таннином и фосфатами, присутствующими в продуктах питания, и выводится с калом. Биодоступность трехвалентного железа из пищевых продуктов и синтетических гидроокисных комплексов железа (III) определяется скоростью высвобождения железа из них и концентрацией железосвязывающих белков, таких как трансферрин, ферритин, муцины, интегрины и мобилферрин. Количество железа, абсорбируемого организмом, строго контролируется механизмом, детали которого еще недостаточно изучены. Были выявлены различные факторы, которые влияют на усвоение железа, например уровень гемоглобина, величина запасов железа, степень эритропоэтической активности костного мозга и концентрация связанного с трансферрином железа. В тех случаях, когда синтез гемоглобина и эритроцитов повышен, например, во время беременности, у растущих детей, или после кровопотери, уровень всасывания железа возрастает (см. Рис. 1-2 Danielson с соавторами, 1996).

Рисунок 1-2


Всасывание гемового и негемового железа. Принципы всасывания гемового и негемового железа из пищи (Danielson с соавторами, 1996, модифицировано Geisser).
Гемовое железо. Всасывается как железопорфириновый комплекс с помощью специальных рецепторов. Не подвержено влиянию различных факторов в просвете кишечника
Негемовое железо. Всасывается как разновидность железа поступающего из солей железа. На процесс абсорбции в кишечнике оказывает влияние ряд факторов: концентрация солей железа, пищевые продукты, рН, лекарственные препараты. Всасывается в виде железа, образующегося из комплексов Fe (III). Находется под влиянием обмена таких железосвязывающих белков, как трансферрин, муцины, интегрины, и мобилферрин.
Оксигеназа гема , специальный фермент, стимулирует распад комплекса железа и порфирина.

1.2.3. Транспорт железа.

В клетках слизистой оболочки тонкого кишечника, во время процесса всасывания, закисное железо Fe(II) превращается в окисное железо Fe(III) для того, чтобы быть включенным в состав трансферрина и транспортироваться по всему организму. Трансферрин синтезируется печенью. Он отвечает за транспортировку не только всосавшегося в кишечнике железа, но и железа, поступающего из разрушенных эритроцитов для повторного использования. В физиологических условиях заняты не более, чем 30% железосвязывающих рецепторов трансферрина плазмы. Это определяет общую железосвязывающую способность плазмы как 100-150 мкг/100 мл (Danielson с соавторами, 1996; Chapman и Hall, 1995).

Молекулярный вес железотрансферринового комплекса слишком велик для того, чтобы выделяться почками, поэтому он остается в кровеносном русле.

1.2.4. Хранение железа.

Железо хранится в организме в виде ферритина и гемосидерина. Из этих двух белков, на долю ферритина приходится большая часть хранимого железа, которое представлено в виде гидроокиси/окиси железа, заключенной в белковую оболочку, апоферритин. Ферритин обнаруживается практически во всех клетках, обеспечивая легкодоступный резерв для синтеза железосодержащих соединений и представляя железо в растворимой, неионной и, безусловно, нетоксичной форме. Наиболее богаты ферритином предшественники эритроцитов в костном мозге, макрофаги и ретикулоэндотелиальные клетки печени. Гемосидерин рассматривают как уменьшенную форму ферритина, в которой молекулы потеряли часть белковой оболочки и сгруппировались вместе. При избытке железа, часть его, хранимая в печени в виде гемосидерина, увеличивается.

Запасы железа расходуются и возмещаются медленно и, поэтому, недоступны для экстренного синтеза гемоглобина при компенсации последствий острого кровотечения или других видов кровопотерь (Worwood, 1982).

1.2.5. Регуляция метаболизма железа.

Когда организм насыщен железом, то есть, им «заполнены» все молекулы апоферритина и трансферрина, уровень всасывания железа в желудочно-кишечном тракте уменьшается. Напротив, при сниженных запасах железа, степень его абсорбции увеличивается настолько, что поглощение становится значительно больше, чем в условиях пополненных запасов железа.

Когда почти весь апоферритин насыщается, трансферрину становится сложно высвобождать железо в тканях. В то же время и степень насыщения трансферрина увеличивается и он исчерпывает все свои резервы в связывании железа (Danielson и Wirkstrom, 1991).

1.3. Железодефицитная анемия

1.3.1. Определения

Недостаточность железа определяется как дефицит общего количества железа, обусловленный несоответствием между возросшими потребностями организма в железе и его поступлением, или его потерями, приводящими к отрицательному балансу. В общем, могут быть выделены две стадии недостатка железа (Siegenthaler, 1994):
Латентный дефицит железа: Уменьшение запасов железа: уровень железа ферритина снижен; увеличена концентрация эритроцитарного протопорфирина; насыщение трансферрина уменьшено; уровень гемоглобина в норме.
Железодефицитная анемия (клинически выраженный дефицит железа): После истощения запасов железа, синтез гемоглобина и других железосодержащих соединений, необходимых для метаболизма, ограничен: уменьшается количество ферритина; концентрация эритроцитарного протопорфирина растет; насыщение трансферрина падает; уровень гемоглобина снижается. Развивается железодефицитная анемия (клинически выраженный дефицит железа).

1.3.2. Эпидемиология

Дефицит железа остается самой частой причиной анемии в мире. Распространенность его определяется физиологическими, патологическими факторами и особенностями питания (Charlton и Bothwell, 1982; Black, 1985).

Предполагают, что в мире страдает железодефицитной анемией около 1.800.000.000 человек (ВОЗ, 1998). Согласно данным ВОЗ, дефицит железа определяется как минимум у 20-25% всех младенцев, у 43% детей в возрасте до 4 лет и 37% детей от 5 до 12 лет (ВОЗ, 1992). Даже в развитых странах эти цифры не ниже 12% - у детей до 4 лет и 7% детей в возрасте от 5 до 12 лет. Латентная форма недостатка железа, конечно, поражает не только маленьких детей, но и подростков. Проведенное в Японии исследование, показало, что латентная форма недостатка железа развивается у 71,8% школьниц уже через три года после начала менструации (Kagamimori с соавторами, 1988).

Современное питание в совокупности с пищевыми добавками, а также использование дополнительных источников железа, уменьшили общую заболеваемость и выраженность дефицита железа. Несмотря на это, обеспечение железом все еще остается проблемой у некоторых групп населения, а именно - у женщин. Из-за ежемесячных кровопотерь и вынашивания детей, у более, чем 51% женщин детородного возраста во всем мире обнаруживаются недостаточные запасы железа или их отсутствие. Без поступления железа извне, у большинства женщин во время беременности возникает дефицит железа (DeMaeyer с соавторами, 1989).

Среди населения, употребляющего пищу, содержащую железо с низкой биодоступностью или страдающего от хронических желудочно-кишечных кровопотерь, вследствие, например, глистной инвазии, и, безусловно, при сочетании обоих факторов, распространенность недостаточности железа наибольшая.

1.3.3. Этиология и патогенез

Кровопотери являются наиболее частой причиной недостаточности железа. Для детей старшего возраста, мужчин, и женщин в постменопаузе ограниченная доступность пищевого железа в редких случаях может служить единственным объяснением имеющегося дефицита железа. Поэтому, у них обязательно должны рассматриваться другие возможные причины дефицита, в особенности, кровопотери.

У женщин детородного возраста наиболее частой причиной повышенной потребности в железе является менструальная кровопотеря. Во время беременности дополнительная потребность в железе (около 1.000 мг на весь период беременности), должна восполняться во избежание развития железодефицитной анемии. Новорожденным, детям и подросткам может также недоставать поступающего с пищей и из депо железа (см. следующую подглаву).

Нарушение всасывания железа бывает одной из причин его недостатка. У некоторых больных, нарушенная абсорбция железа в кишечнике может маскироваться общими синдромами, такими как стеаторрея, спру, целиакия или диффузный энтерит. Атрофический гастрит и сопутствующая ахлоргидрия также могут уменьшать всасывание железа. Недостаточность железа часто возникает после операций на желудок и гастроэнтеростомии. Плохой абсорбции железа могут способствовать как снижение продукции соляной кислоты, так и уменьшение времени, необходимого для всасывания железа. Менструирующие женщины, имеющие повышенную потребность в железе, могут употреблять продукты с очень низким содержанием железа и/или содержащие ингибиторы всасывания железа, такие как кальций, фитины, таннины или фосфаты. Больные с пептической язвой, склонные к желудочно-кишечным кровопотерям, могут принимать антациды, которые уменьшают всасывание железа с пищей.

Количество железа, содержащееся в пище, также имеет большое значение. Именно этот фактор объясняет высокую частоту железодефицитной анемии в развивающихся странах. Различия между гемовым и негемовым железом являются решающими для понимания особенностей их биодоступности. Гемовое железо легко усваивается, приблизительно на 30%. Его абсорбция мало зависит от состава пищи, в то время как негемовое железо хорошо всасывается лишь при определенных условиях. Если в пище отсутствуют компоненты, способствующие всасыванию железа (например, аскорбиновая кислота), усваивается менее чем 7% железа, содержащегося в таких овощах, как рис, кукуруза, фасоль, соя, пшеница. Следует отметить, что некоторые вещества, присутствующие в рыбе и мясе, увеличивают биодоступность негемового железа. Таким образом, мясо одновременно является и источником гемового железа и усиливает всасывание негемового железа (Charlton и Bothwell, 1982).

1.4. Латентный дефицит железа и умственные нарушения

Эпидемиология, этиология и патогенез описаны в предыдущих главах.

Такие симптомы как слабость, упадок сил, рассеянное внимание, пониженная работоспособность, трудности с подбором правильных слов и забывчивость, часто ассоциируются с анемией. Принято объяснять эти клинические проявления исключительно сниженной способностью эритроцитов переносить кислород.

В этой главе кратко показано, что железо само по себе оказывает влияние на мозг и, следовательно, на умственные процессы. Поэтому такие симптомы могут встречаться и у лиц, имеющих лишь дефицит железа при отсутствии анемии (латентный дефицит железа).

1.4.1. Влияние содержания железа на функции головного мозга

В исследовании, включавшем 69 студентов - правшей, Tucker с соавторами (1984) исследовали уровень сывороточного железа и ферритина, а также активность головного мозга, как в покое, так и в состоянии напряжения, пытаясь выявить возможные корреляции между гематологическими параметрами и активностью мозга, а также умственными способностями. Полученные результаты были неожиданными. От уровня железа в организме зависели и активность левого полушария, и умственные способности. Было установлено, что, чем ниже уровень ферритина, тем слабее активность не только левого полушария, но и затылочной доли обоих полушарий.

Это означает, что, если уровень ферритина сыворотки низкий, доминантное полушарие в целом, и зоны центров оптической памяти обоих полушарий, менее активны. А поскольку эти центры, а также область визуальной речи и область сенсорной речи левого полушария являются основными в функции памяти, становится очевидным, что состояние дефицита железа может привести к ослаблению памяти.

Одновременно результаты этого исследования показали корреляцию между уровнем железа и познавательной активностью. В частности, беглость речи (измеряемая способностью человека придумывать слова, начинающиеся и заканчивающиеся определенными буквами) была снижена при уменьшенных запасах железа. Это не удивительно, так как области речи доминантного полушария менее активны, при низком уровне железа.

Суммируя приведенные результаты, можно сказать, что и активность мозга, и познавательные способности зависят от уровня железа в организме. (Tucker с соавторами, 1984).

В этой связи, встает вопрос о том, какой механизм лежит в основе латерализации активности мозга. Ранее предполагалось, что типичные симптомы недостатка железа, такие как слабость, плохая концентрация внимания и т.д., обусловлены только низким уровнем гемоглобина. Однако, маловероятно, чтобы низкий уровень гемоглобина смог уменьшить активность только определенных областей мозга.

Это исследование, также как и ряд других (Oski с соавторами, 1983; Lozoff с соавторами, 1991), показали, что познавательные способности были снижены у больных с латентным дефицитом железа.

Существует два различных пути влияния дефицита железа на функциональную активность мозга.

  • во-первых, железо играет важную роль в допаминергических системах
  • во-вторых, уровень железа оказывает влияние на миелинизацию нервных волокон.
  • Как показал Youdim с соавторами (1989), обмен железа в головном мозге находится на очень низком уровне, а способность мозга запасать железо значительно менее выражена, чем у печени. Однако, в отличие от печени, головной мозг в большей степени удерживает железо и препятствует истощению его запасов. Уменьшение запасов железа, вызванное его нехваткой, происходит быстрее в печени, чем в головном мозге. С другой стороны, после восполнения запасов железа, его уровень возрастает намного быстрее в печени, чем в мозге, и, кроме того, уровень железа в печени также выше, чем в мозге.

    Рисунок 1-3


    Познавательная активность головного мозга и уровень железа. Переработано из материалов Tucker с соавторами (1984)

    Единственным объяснением более медленного изменения уровня железа в головном мозге является то, что процесс, благодаря которому железо проходит гематоэнцефалический барьер (ГЭБ), отличается от процессов всасывания железа в кишечнике и хранения его в печени. ГЭБ пропускает дополнительное количество железа только в том случае, когда имеется дефицит железа.

    Физиология нервных синапсов:

    В результате генерации электрического импульса происходит высвобождение допамина. Допамин связывается как постсинаптически, т.е. последующей нервной клеткой, так и пресинаптически, т.е. данной клеткой. Если он был захвачен последующей нервной клеткой, то он фиксируется допамин-2-рецептором (Д2-рецептор) и стимулирует нервную клетку. Таким образом, импульс переходит с одной клетки на другую. Если допамин захватывается выделившей его клеткой, он связывается с допамин-1-рецептором и посылает обратный сигнал, который прекращает дальнейший синтез допамина. В случае недостатка железа, количество или чувствительность Д2-рецепторов снижается (Youdim с соавторами, 1989). В результате, стимулирующий эффект допамина на следующую клетку уменьшается, и количество проходящих импульсов сокращается.

    Было описано три возможных железо-зависимых механизма, которые могут привести к уменьшению количества и чувствительности допамин-2-рецепторов (Yehuda и Youdim, 1989):
    1. Железо может входить в состав участка допаминового рецептора, к которому прикрепляются нейротрансмиттеры.
    2. Железо является компонентом двойного мембранно-липидного слоя, в который включены рецепторы.
    3. Железо вовлечено в синтез допамин-2-рецепторов.

    Рисунок 1-4


    Допаминовые рецепторы. В условиях дефицита железа, количество или чувствительность Д2-рецепторов снижается. (Youdim с соавторами, 1989).

    Влияние Д2-рецепторов на процесс обучения:

    Области мозга, в которых, как известно, концентрация железа наиболее высокая, также имеют самую густую сеть нейронов, специфически реагирующих на опиатные пептиды (энкефалины, эндорфины и т.д.). За последние несколько лет стало очевидным, что эндогенные опиатные пептиды вовлечены в процессы памяти и обучения, так как введение таких пептидов вызывает амнезию и забывчивость (Pablo, 1983 и 1985).

    Yehuda с соавторами (1988) показал, что у крыс с недостатком железа имеется очевидное увеличение опиатных пептидов. Лежащий в основе этого механизм изучен недостаточно полно, тем не менее, считается, что допамин является ингибитором опиатов. Другими словами, оказалось, что опиаты уменьшают способность к обучению, а допамин является ингибитором опиатов. Чем меньше Д2-рецепторов, тем менее выражен эффект допамина, что влечет за собой увеличение содержания опиатов (см. Рис. 1-5).

    Рисунок 1-5


    Способность к обучению. Переработано из материалов Yehuda с соавторами (1988)

    Влияние железа на миелинизацию:

    Yu с соавторами показали в исследовании на крысятах (1986), что недостаток железа у самки во время беременности и лактации, приводит к снижению миелинизации нервных клеток у крысят по сравнению с потомством крыс, имевших достаточное содержание железа. Очевидно, что если миелиновые оболочки дефектны, то импульсы не могут проходить должным образом, и, в результате, нормальная работа нервных клеток нарушается. Вследствие этого могут развиваться психические нарушения, часто необратимые (см. главу 4.1.2.).

    Рисунок 1-6


    Нейрон и синапс. При нарушении целостности миелиновой оболочки нарушается процесс прохождения импульсов и функции нервной клетки. В результате возникают психические отклонения, которые могут быть необратимы.

    Преимущественное развитие мозга человека происходит в перинатальном периоде и в первые годы жизни. Поэтому очень важно избежать дефицита железа именно в это время.

    Как уже упоминалось ранее, скрытый недостаток железа встречается не только в детском возрасте, но также может развиваться у подростков и молодых женщин. Исследование, проведенное в Японии, показало, что 71,8% школьниц страдают от скрытого недостатка железа уже через три года после начала менструации (Kagamimori с соавторами, 1988).

    1.4.2. Симптомы скрытого недостатка железа:

  • слабость, утомление
  • беспокойство, недостаточная концентрация внимания
  • утренние головные боли
  • депрессивная дисфория, психологическая лабильность
  • снижение работоспособности
  • пониженный аппетит
  • повышенная предрасположенность к инфекциям
  • трудность в подборе слов (беглость речи), забывчивость
  • 1.5. Диагностика

    1.5.1. Методы оценки содержания железа

    Такие признаки и симптомы анемии, как бледность кожи и конъюнктивы, слабость, одышка или сниженный аппетит, не являются специфичными и выявляются с трудом. Кроме того, на клиническую диагностику анемии влияют множество факторов, например, толщина кожи и степень ее пигментации. Поэтому, указанные симптомы не могут считаться надежными до тех пор, пока анемия не станет очень тяжелой. Таким образом, для диагностики латентного дефицита железа следует использовать лабораторные тесты (см. Рис. 1-7). Поскольку латентный дефицит железа не упоминается на Рис. 1-7, пожалуйста, посмотрите в главе 1.3.1. показатели, рекомендуемые для изучения начальной стадии анемии, а также ее выраженности.

    Рисунок 1-7


    Стадии развития железодефицитной анемии. Схема, иллюстрирующая различные уровни железа в условиях его избытка и недостатка. (Danielson с соавторами, 1996).

    Наиболее информативные тесты для диагностики анемии включают оценку общего объема всех эритроцитов (гематокрит) или концентрацию гемоглобина в циркулирующей крови. Оба измерения могут проводиться как в капиллярной крови, получаемой после прокола кожи, так и венозной крови, забираемой путем венепункции (DeMaeyer с соавторами, 1989).

    Для более глубокого понимания изменений, происходящих при ЖДА, представляется целесообразным кратко описать метаболизм железа в организме человека.

    Железо - один из основных микроэлементов организма: его содержание составляет 0,0065% массы тела, т. е. около 4-5 г. у взрослого человека. Биологическая роль железа связана со способностью легко окисляться и восстанавливаться. Ферропротеины транспортируют кислород и передают электроны, то есть являются непосредственными участниками тканевого дыхания (Рисунок 1).

    Рисунок 1. Распределение железа в организме

    1. 70% общего количества железа в организме входит в состав гемопротеинов; это соединения, в которых железо связано с порфирином. Основной представитель этой группы - гемоглобин (58% железа); кроме того, в эту группу входят миоглобин (8% железа), цитохромы, пероксидазы, каталазы (4% железа).

    2. Группу негемовых ферментов - ксантиноксидаза, НАД-Н-дегидрогеназа, аконитаза; эти железосодержащие ферменты локализуются в основном в митохондриях, играют важную роль в процессе окислительного фосфорилирования, транспорте электронов. Они содержат очень мало металла и не влияют на общий баланс железа; однако их синтез зависит от обеспеченности тканей железа.

    3. Транспортная форма железа - трансферрин, лактоферрин, низкомолекулярный переносчик железа. Основным транспортным ферропротеином плазмы является трансферрин. Этот белок бетта- глобулиновой фракции с молекулярным весом 86000 имеет два активных участка, каждый из которых может присоединить по одному атому железа трёх валентного. В плазме присутствует больше железосвязывающих сайтов, чем атомов железа и, таким образом, в ней нет свободного железа. Трансферрин может связывать и другие ионы металлов - медь, марганец, хром, но с иной селективностью, а железо связывается в первую очередь и более прочно. Основное место синтеза трансферрина - клетки печени. С повышением уровня депонированного железа в генатоцитах синтез трансферрина заметно снижается. Трансферрин, несущий железо, авиден к нормоцитам и ретикулоцитам, причём величина поглощения металла зависит от наличия свободных рецепторов на поверхности эритроидных предшественников. На мембране ретикулоцита значительно меньше участков связывания для трансферрина, чем на пронормоците, то есть по мере старения эритроидной клетки захват железа уменьшается.

    Низкомолекулярные переносчики железа обеспечивают транспорт железа внутри клеток.

    4. Депонированное, резервное или запасное железо может находиться в двух формах - ферритин и гемосидерин. Содержание резервного железа состоит из белка апоферритина, молекулы которого окружают болыно-е количество атомов железа. Ферритин - соединение коричневого цвета, растворимо в воде, содержит 20% железа. При избыточном накоплении железа в организме резко возрастает синтез ферритина. Молекулы ферритина имеются практически во всех клетках, но особенно много их в печени, селезёнке, костном мозге. Гемосидерин присутствует в тканях в виде бурого, гранулярного, нерастворимого в воде пигмента. Содержание железа в гемосидерине выше, чем в ферритине - 40%. Повреждающее действие гемосидерина в тканях сопряжено с повреждением лизосом. Накоплением свободных радикалов. Что приводит к гибели клетки. У здорового человека 70% резервного железа находится в виде ферритина, а 30% - в виде гемосидерина. Скорость использования гемосидерина значительно ниже, чем ферритина. О запасах железа в тканях можно судить на основании гистохимических исследований, применяя полуколичественный метод оценки. Подсчитывают число сидеробластов - ядерных эритроидных клеток, содержащих разное количество гранул негемового железа.

    Особенность распределения железа в организме детей младшего возраста заключается в том, что у них выше содержание железа в эритроидных клетках и меньше железа приходится на мышечную ткань.

    Регуляция баланса железа базируется на принципах почти полной реутилизации эндогенного железа и поддержание необходимого уровня за счёт всасывания в желудочно-кишечном тракте. Полу период выведения железа составляет 4-6 лет.

    Механизмом, регулирующим обмен железа в организме человека, является всасывание железа в желудочно-кишечном тракте. Выделение его из организма кишечником, с кожей, потом с мочой, являющееся пассивным процессом, лимитировано. В последние 30 лет большое количество исследований в нашей стране и за рубежом посвящено изучению различных этапов всасывания железа. Однако этот механизм и особая роль слизистой оболочки кишечника в регуляции запасов железа и его превращений неизвестно.

    При среднем поступлении с пищей 10-20 мг железа в сутки у здорового человека не более 1-2 мг всасывается в желудочно-кишечный тракт. Наиболее интенсивно этот процесс происходит в двенадцатиперстной кишке и начальных отделах тощей кишки. Желудок играет лишь незначительную роль в усвоении: из него поступает в организм не более 1-2% от общего количества поступающего в желудочно-кишечный тракт. Соотношение в пище продуктов животного и растительного происхождения, веществ, усиливающих и тормозящих усвоение, состояние эпителия желудочно-кишечного тракта - всё это оказывает влияние на величину усвоения железа.

    Этапы обмена железа в организме

    Процесс усвоения железа состоит из ряда последовательных этапов:

    1) начальный захват железа щеточной каймой клеток слизистой оболочки кишечника.

    2) внутриклеточный транспорт, образование запасов железа в клетке.

    3) освобождение железа из слизистой оболочки кишечника в кровь.

    В экспериментальных исследованиях выяснилось, что клетки эпителия слизистой оболочки кишечника чрезвычайно быстро забирают железо из его полости. А ультразвуковые исследования показали, что первый этап обеспечивает достаточную концентрацию железа на поверхности слизистой оболочки клеток для последующего его усвоения организмом. При этом железо концентрируется щёточной кайме, превращения происходят на мембране микроворсинок.

    Второй этап - это поступление железа в богатую рибосомами цитоплазму и межклеточное пространство. И, наконец, третий этап - перенос железа в кровеносные сосуды.

    Комплекс трансферрин-железо, образовавшийся в результате захвата железа из клетки слизистой оболочкой кишечника, поступает главным образом в костный мозг, небольшая его часть - в запасный фонд, преимущественно в печень, и ещё меньшее количество железа забирается тканями для образования миоглобина, некоторых ферментов тканевого дыхания и нестойких комплексов железа с аминокислотами и белками.

    Костный мозг, печень и тонкий кишечник являются тремя основными органами обмена железа. Клетки костного мозга, так же как и клетки эпителия слизистой оболочки кишечника, имеют повышенную способность захватывать железо из насыщенного трансферрина. Таким образом ненасыщенный трансферрин лучше связывает, а насыщенный - лучше отдаёт железо.

    Основным источником плазменного железа являются его поступления из внутренних органов, таких как печень, селезёнка, костный мозг, где происходит разрушение гемоглобина эритроцитов. Небольшое количество железа поступает в плазму из запасного фонда и при взятии его из пищи в желудочно-кишечном тракте. Преобладающим циклом в обмене железа в организме человека является образование и разрушение гемоглобина эритроцитов, что составляет 25 мг железа в сутки. Фермент сыворотки крови, вероятно, осуществляет транспортировку железа к клеткам печени, однако его роль в общем обмене железа в организме человека представляется минимальной.

    Обмен железа между транспортным и тканевым его фондами изучен недостаточно, так как пути и движения железа из тканей в плазму крови и наоборот изучены мало. Расчётные данные, однако, свидетельствуют о том, что величина плазменно-тканевого обмена железа составляет приблизительно 6 мг в сутки.

    ← + Ctrl + →
    Глава 6. Эритроциты Глава 7. Система гемостаза

    Обмен железа

    Железо является одним из основных по значению микроэлементов организма. Почти все железо входит в состав различных белков. Из них наиболее важен гемоглобин, функция которого - перенос кислорода от легких к тканям. Гемоглобин состоит из небелковой части - гема, и белковой части - глобина. В молекуле гема железо связано с протопорфирином. Гем не только входит в состав гемоглобина, он содержится в миоглобине, цитохромах, входит в состав каталазы, лактопероксидазы. Основной белок, содержащий железо и не имеющий гемовой группы, - ферритин. Он содержит железо запасов. Железо входит и в состав производного ферритина - гемосидерина. Не содержит группы гема белок трансферрин, переносящий железо. Железо в негемовой форме есть в ряде ферментов (аконитазе, ксантиноксидазе). Основное количество железа в организме (57,6%) входит в состав гемоглобина и содержится в эритроцитах.

    Значительное количество железа есть в мышцах (27,6%). Большая часть этого железа входит в состав ферритина (68,1% железа мышц), остальная часть включена в миоглобин (21,9%). В печени откладывается 7,8% железа организма. Железо печени в основном входит в состав ферритина и гемосидерина.

    Трансферрин - белок плазмы крови, относящийся к глобулинам. Он имеет 2 активных участка, каждый из которых может связать по одному атому железа в трехвалентной форме. Основной синтез трансферрина у людей происходит в печени. За сутки производится 12-24 мг трансферрина на 1 кг массы, т. е. 5-9% всего количества этого белка.

    Содержание железа в организме зависит в основном от его всасывания. Выделение железа из организма - процесс, недостаточно регулируемый. Существует сложный механизм, препятствующий всасыванию избыточного количества железа. Хотя теоретически весь кишечник, включая толстую кишку, способен всасывать железо, основное количество железа всасывается в двенадцатиперстной кишке, а также в начальной части тощей кишки. Чем больше дефицит железа, тем дальше в тощую кишку распространяется зона его всасывания. Процесс всасывания железа у человека включает в себя проникновение железа в слизистую оболочку из просвета кишки, проникновение железа из слизистой оболочки в плазму, заполнение запасов железа в слизистой оболочке и влияние этих запасов на всасывание. Железо проникает в слизистую оболочку из просвета кишки всегда быстрее, чем поступает из слизистой оболочки в плазму. Хотя обе величины зависят от потребностей организма в железе, проникновение железа в слизистую оболочку кишки меньше зависит от содержания железа в организме, чем проникновение железа из слизистой оболочки в плазму. При повышенной потребности организма в железе скорость его поступления в плазму из слизистой оболочки приближается к скорости проникновения в слизистую оболочку кишки. Железо при этом в кишке практически не откладывается. Прохождение железа через слизистую оболочку занимает несколько часов. В этот период кишка невосприимчива к дальнейшему всасыванию железа. Через некоторое время железо вновь всасывается с такой же интенсивностью. При уменьшении потребности организма в железе замедляется его проникновение в кишку, еще больше уменьшается поступление железа из слизистой оболочки в плазму. Большая часть железа, которое не всасывается, откладывается в кишке в виде ферритина.

    Всасывание железа, входящего в состав гема, происходит значительно более интенсивно, чем всасывание неорганического пищевого железа. В слизистой оболочке кишки имеется фермент гемоксигеназа, необходимый для распада молекулы гема на билирубин, окись углерода и ионизированное железо. При нормальном содержании железа в организме значительная его часть проходит через слизистую оболочку кишки в ток крови, а определенная часть задерживается в стенке кишки. При сидеропении в слизистой оболочке задерживается значительно меньшая часть, основная часть железа оказывается в плазме. При избытке железа в организме основная часть железа, проникшего в слизистую оболочку, в ней и задерживается. Впоследствии эпителиальная клетка, наполненная железом, движется от основания к концу ворсинки, затем слущивается и выводится с калом вместе с невсосавшимся железом.

    Этот физиологический механизм всасывания действует при обычных содержащихся в нормальной пище концентрациях железа. Если концентрация железа превышает в десятки и сотни раз физиологическую, то всасывание ионного двухвалентного железа во много раз возрастает. Это следует учитывать при лечении больных солями двухвалентного железа. Трехвалентное железо практически не всасывается ни в физиологических концентрациях, ни в избыточных. Всасывание пищевого железа строго лимитировано: за сутки всасывается не более 2-2,5 мг.

    Железо содержится во многих продуктах как растительного, так и животного происхождения. Высока концентрация железа в мясе, печени, почках, много железа содержат бобы сои, петрушка, горох, шпинат, сушеные абрикосы, чернослив, изюм. Значительное количество железа содержится в рисе, хлебе, яблоках. Однако имеет значение не количество железа в продукте, а его всасывание из данного продукта. Из продуктов растительного происхождения железо всасывается очень ограниченно, в значительно большей степени - из большинства животных продуктов. Железо, входящее в состав белков, содержащих гем, всасывается значительно лучше, чем из ферритина и гемосидерина, а железо из печени всасывается значительно меньше, чем из мяса. Поэтому хуже всасывается железо из рыбы, так как в ней железо присутствует в основном в виде гемосидерина и ферритина, а в телятине до 90% железа содержится в виде гема.

    На всасывание железа влияет ряд факторов. Частота сочетания железодефицитной анемии с ахилией (отсутствие соляной кислоты и фермента пепсина в желудочном соке) еще в XX в. дала основание предполагать, что железо всасывается лишь при нормальной желудочной секреции и ахилия является одним из основных факторов, приводящих к развитию железодефицитной анемии. Однако исследования показали, что нормальная желудочная секреция влияет на всасывание некоторых форм железа, однако это не главный фактор в регуляции его всасывания. Хлористоводородная кислота влияет лишь на всасывание трехвалентного железа. Желудочная секреция не влияет на всасывание железа, входящего в состав гема.

    В норме всасывание гемоглобинового железа у здоровых женщин в среднем составляет 16,9 ± 1,6%, у мужчин - 13,6 ± 1%. При железодефицитной анемии всасывание железа резко повышено и не различается у лиц с нормальной и пониженной секрецией. Нормальным оказалось всасывание железа у лиц, перенесших удаление части желудка. У лиц с без анемии всасывание гемоглобинового железа не отличалось от всасывания железа у здоровых лиц. Доказано, что оксалаты, фитаты, фосфаты входят в комплекс с железом и снижают его всасывание, а ряд веществ усиливает всасывание железа. К ним относятся аскорбиновая, янтарная, пировиноградная кислоты, фруктоза, сорбит. Всасывание железа усиливается под влиянием алкоголя.

    Недостаток кислорода, снижение запасов железа в организме, активизация кроветворения усиливают всасывание железа. Влияют на всасывание железа насыщение трансферрина, концентрация железа плазмы, скорость оборота железа, уровень эритропоэтина.

    После всасывания железо связывается с трансферрином, который переносит железо к эритрокариоцитам костного мозга. Кроме того, трансферрин переносит железо от клеток, где хранятся его запасы, к эритрокариоцитам, а также от фагоцитирующих макрофагов, где железо распадается, к клеткам костного мозга и к местам, где сохраняются запасы железа. Одна молекула трансферрина присоединяет 2 атома железа.

    На мембране эритрокариоцита и мембране ретикулоцитов наблюдаются специфические участки для обратимого присоединения трансферрина. Связывание железа с трансферрином и его освобождение - это активные процессы, которые подавляются ингибиторами ферментов. К поверхности ретикулоцита могут присоединяться 25 000-50 000 молекул трансферрина, нагруженных железом. Меченый по железу трансферрин легко присоединяется к ретикулоцитам, но не присоединяется к лейкоцитам, тромбоцитам и зрелым эритроцитам.

    После того как трансферрин «разгружает» железо на поверхности эритрокариоцитов, оно проникает внутрь клетки. Трансферрин в большинстве случаев способен возвращаться в плазму, но некоторые его молекулы проникают внутрь эритрокариоцита и связываются с молекулой носителя. Железо проникает в митохондрии, где происходит синтез гема из протопорфирина и железа. Образование ферритина происходит в эритрокариоците из белка апоферритина, синтезируемого в клетке, и железа, проникшего в клетку.

    Наиболее вероятно, что синтез ферритина в эритрокариоците нужен для удаления из клетки избыточного железа, не вошедшего в гемоглобин. Этот ферритин собирается в лизосомах, а затем удаляется из клетки как в костном мозге, так и в циркуляции после удаления из клетки ядра. В удалении гранул железа из циркулирующей клетки участвует, по‑видимому, селезенка, так как в эритроцитах людей после удаления селезенки обнаруживаются гранулы железа, а в норме выявить их в зрелых эритроцитах не удается.

    Основным белком, используемым для сохранения избытка железа в организме, является ферритин. Ферритин - это водорастворимый комплекс гидроокиси трехвалентного железа и белка - апоферритина. Гидроокись железа соединена с остатком фосфорной кислоты. Молекула ферритина напоминает по форме грецкий орех: скорлупа ореха - это белок апоферритин, а внутри находятся в различном количестве атомы железа, почти вплотную прилегающие один к другому. Ферритин может вместить до 4500 атомов железа, практически 1 молекула содержит около 3000 атомов. Молекулярная масса ферритина зависит от числа атомов железа, а этот показатель может колебаться. В среднем молекулярная масса ферритина близка к 460 000. Ферритин в норме имеется в плазме и практически почти во всех клетках организма, но больше всего - в печени и мышцах.

    Гемосидерин - белок, содержащий железо, обнаруживаемый в фагоцитирующих макрофагах и их производных, в макрофагах костного мозга и селезенки, в купферовских клетках печени. Гемосидерин - это частично денатурированный и депротеинизированный ферритин. Иммунологически гемосидерин полностью идентичен ферритину. Молекула ферритина содержит 20% железа, а в гемосидерине железа больше - 25-30%. В отличие от ферритина гемосидерин нерастворим в воде.

    Как гемосидерин, так и ферритин используются в качестве белков запаса, однако скорость мобилизации гемосидерина значительно более медленная, чем ферритина. Железо запасов может быть как в паренхиматозных клетках, так и в фагоцитирующих макрофагах. В норме основную часть железа, связанного с трансферрином, организм использует для кроветворения. Фагоцитирующие макрофаги, получившие железо при разрушении в них эритроцитов, в основном передают это железо трансферрину, который вновь использует его для кроветворения. Паренхиматозные клетки тоже содержат железо, но в основном в запасах, и лишь малая часть его передается трансферрину и используется для эритропоэза. Паренхиматозные клетки в свою очередь получают железо из трансферрина.

    В отличие от железа макрофагов железо, находящееся в паренхиматозных клетках, расходуется медленно. Аскорбиновая кислота увеличивает освобождение железа из макрофагов, но не влияет на его освобождение из паренхиматозных клеток. Освобождение железа из паренхиматозных клеток увеличивается при кровотечениях и уменьшается при массивных гемотрансфузиях. При кровотечениях уменьшается захват эритроцитов макрофагами, следовательно, освобождение железа макрофагами в такой ситуации имеет меньшее значение.

    Понятие «лабильный пул железа» появилось при изучении кинетики железа. Оно покидает плазму и входит в интерстициальное пространство тканей. Там железо может связываться с клеточными мембранами. Его часть возвращается в плазму, и этот процесс приводит к отклонению линии клиренса железа, что выявляется в 1‑й или во 2‑й день после введения радиоактивного железа. Изменение в наклоне линии зависит от количества так называемого лабильного пула. Рассчитано, что в норме лабильный пул содержит 80-90 мг железа.

    Тканевое железо - это 6-8 мг железа, входящего в состав цитохромов и других ферментов всех тканей организма.

    Мужчины за сутки теряют около 1 мг железа. Потери железа у неменструирующих женщин соответствуют этим цифрам. Потери железа у менструирующих женщин намного превышают потери железа у мужчин. Они слагаются из потерь, свойственных мужчинам, и потерь, свойственных только женщинам: потери железа во время менструальных кровотечений, во время беременности, родов и лактации.

    По данным различных исследований, потери железа у здоровых женщин колеблются от 2 до 79 мг за одну менструацию. В среднем они теряют за время менструации 30 мл крови, что соответствует 15 мг железа, однако у 11% здоровых женщин количество теряемой крови превышает 80 мл (40 мг железа). Такую кровопотерю гинекологи считают нормальной. У рожавших женщин кровопотеря несколько больше, чем у нерожавших. Таким образом, при расчете потери железа на 1 день месяца следует учитывать, что при нормальных менструациях женщины теряют в день от 0,5 до 1,2 мг железа.

    Во время беременности потеря железа составляет не менее 700-800 мг, а потребности в железе во время беременности большие, они составляют 800-1200 мг.

    ← + Ctrl + →
    Глава 6. Эритроциты Глава 7. Система гемостаза