Компонентом противосвертывающей системы плазмы крови является. Противосвертывающая система крови

О чем говорят анализы. Секреты медицинских показателей – для пациентов Евгений Александрович Гринь

4. Свертывающая система крови

4. Свертывающая система крови

Свертывающая система крови – это одна из наиболее важных защитных систем организма, которая обеспечивает сохранность крови в сосудистой системе, а также предотвращает гибель организма от кровопотери при нарушении целостности сосудов при травме.

Рис. 15. Так выглядит артерия изнутри

Науке на современном этапе ее развития известно, что в остановке кровотечения принимают участие два механизма:

Клеточный, или сосудисто-тромбоцитарный.

Плазменный, коагуляционный.

Следует иметь в виду, что деление реакций гемостаза на клеточный и плазменный является условным, т. к. два этих механизма свертывающей системы неразрывно связаны и отдельно друг от друга функционировать не могут.

Процесс свертывания крови осуществляется при многостадийном взаимодействии плазменных белков на фосфолипидных мембранах, именуемых факторами свертывания крови. Эти факторы обозначаются римскими цифрами. В случае же их перехода в активированную форму к номеру фактора добавляют маленькую букву «а».

Чтобы как следует разобраться, необходимо знать, что же входит в состав этих факторов.

Их всего 12:

I – фибриноген. Его синтез происходит в печени, а также в костном мозге, селезенке, лимфатических узлах и других клетках ретикулоэндотелиальной системы. Разрушение фибриногена происходит в легких под действием специального фермента – фибриногеназы. В норме в плазме содержится 2–4 г/л. Минимальное же количество, необходимое для гемостаза, составляет всего 0,8 г/л.

II – протромбин. Протромбин образуется в печени с помощью витамина К. При эндогенном или экзогенном дефиците витамина К происходит снижение количества протромбина или же нарушается его функциональность. Это ведет к образованию неполноценного протромбина. В плазме его содержится всего 0,1 г/л, но скорость свертывания крови нарушается только при снижении протромбина до 40 % от нормы и ниже.

III – тканевой тромбопластин. Это не что иное как термостабильный липопротеид, который содержится во многих органах (в легких, мозге, сердце, почках, печени и скелетных мышцах). Особенностью тканевого тромбопластина является то, что он находится в тканях не в активном состоянии, а лишь в роли предшественника – протромбопластина.

Тканевой тромбопластин, взаимодействуя с факторами IV и VII, может активировать плазменный фактор X, а также принимает участие во внешнем пути формирования комплекса факторов, которые протромбин преобразовывает в тромбин, т. е. протромбиназы.

IV – ионы кальция. В норме содержание этого фактора в плазме равно 0,09-0,1 г/л. Из достоинств фактора IV следует отметить то, в принципе невозможен его расход, и процессы свертывания не нарушаются даже при снижении концентрации кальция. Ионы кальция также участвуют во всех трех фазах свертывания крови.

V – проакцелерин, плазменный AC-глобулин, или лабильный фактор. Этот фактор образуется в печени, но от других печеночных факторов (II,VII, X) его отличает то, что он не зависит от витамина K. В плазме его содержится всего 0,01 г/л.

VI – акцелерин, или сывороточный AC-глобулин. Является активной формой фактора V.

VII – проконвертин. Образуется в печени при участии витамина К. Содержится в плазме всего 0,005 г/л.

VIII – антигемофильный глобулин А. Синтез его происходит в печени, селезенке, клетках эндотелия, почках, лейкоцитах. Его содержание в плазме колеблется в пределах 0,01-0,02 г/л. Принимает участие во внутреннем пути формирования протромбиназы.

IX – фактор Кристмаса, антигемофильный глобулин В. Синтезируется в печени также при участии витамина K и его количество в плазме составляет 0,003 г/л. Активно принимает участие во внутреннем пути формирования протромбиназы.

X – фактор Стюарта-Прауэра. Образуется в неактивном состоянии в печени, а затем активируется трипсином и ферментом из яда гадюки. Также зависим от витамина K. Участвует в образовании протромбиназы. Содержание в плазме составляет всего 0,01 г/л.

XI – фактор Розенталя. Этот фактор синтезируется в печени, а также является антигемофильным фактором и плазменным предшественником тромбопластина. Содержание фактора Розенталя в плазме составляет примерно 0,005 г/л.

XII – фактор контакта, фактор Хагемана. Образуется также в печени в неактивном состоянии. Содержание в плазме всего 0,03 г/л.

XIII Фибринстабилизирующий фактор, фибриназа, плазменная трансглутаминаза. Принимает участие в формировании плотного сгустка.

Также не стоит забывать и о вспомогательных факторах:

Фактор Виллебранда, который является антигеморрагическим сосудистым фактором. Он выполняет роль белка-носителя для антигемофильного глобулина А.

Фактор Флетчера – плазменный прекалликреин. Принимает участие в активации плазминогена, факторов IX и XII, а также переводит кининоген в кинин.

Фактор Фитцджеральда – плазменный кининоген (фактор Фложека, фактор Вильямса). Активно принимает участие в активации плазминогена и фактора XII.

Для нормального состояния крови бесперебойно должны работать три системы:

1. Свертывающая.

2. Противосвертывающая.

3. Фибринолитическая.

И эти три системы находятся в состоянии динамического равновесия. Нарушение этого равновесия может привести, как к неостанавливаемым кровотечениям, так и к тромбофилиям.

Так, наследственный или приобретенный дефицит компонентов фибринолитической системы и первичных антикоагулянтов может стать причиной развития тромбофилических состояний, которые характеризуются склонностью к многочисленно повторяющимся тромбозам. Наиболее часто приобретенные формы тромбофилии вызваны:

Во-первых, повышенным потреблением антикоагулянтов или компонентов фибринолитической системы, которое сопровождается массивным внутрисосудистым свертыванием крови;

Во-вторых, проведением интенсивной противосвертывающей и фибринолитической терапии, которая ускоряет метаболизм тех же антикоагулянтов или компонентов фибринолитической системы. В данной ситуации, чтобы восполнить недостаток факторов крови, проводят внутривенное введение их концентратов или переливание свежезамороженной плазмы.

Нарушение свертываемости крови, которое характеризуется склонностью к часто повторяющимся тромбозам сосудов и инфарктам органов, также очень часто связывают с наследственным или симптоматическим недостатком антитромбина III, компонентов фибринолитической и калликреин-кининовой системы, а также с нехваткой фактора XII и аномалиями фибриногена.

К причинам тромбофилий относят гипперагрегацию тромбоцитов, а также недостаток простациклина и прочих блокираторов агрегации тромбоцитов.

С другой стороны, существует определенное состояние, при котором наоборот происходит снижение свертываемости крови. Данное состояние получило название – гипокоагуляция. Ее появление связывают:

С недостатком одного или нескольких факторов свертывания крови.

С появлением в кровотоке антител к факторам свертывания крови. Наиболее часто происходит угнетение факторов V, VIII, IX, а также фактора Виллебранда.

С действием противосвертывающих и тромболитических препаратов.

С ДВС-синдромом (синдромом диссеминированного внутрисосудистого свертывания крови.

Что касается наследственных заболеваний, при которых происходит нарушение свертываемости крови, то в большинстве случаев они представлены гемофилией A и B, а также болезнью Виллебранда. Для этих болезней свойственна кровоточивость, возникающая еще в детском возрасте, причем у мужчин кровоточивость преимущественно гематомного типа, т. е. кровоизлияния наблюдаются в суставах и происходит поражение всего опорно-двигательного аппарата. Смешанный же тип кровоточивости – петехиально-пятнистый с редкими гематомами встречается у обоих полов, но уже при болезни Виллебранда.

Из книги Заболевания крови автора М. В. Дроздова

Из книги Нормальная физиология: конспект лекций автора Светлана Сергеевна Фирсова

автора О. В. Осипова

Из книги Пропедевтика детских болезней: конспект лекций автора О. В. Осипова

автора Павел Николаевич Мишинькин

Из книги Общая хирургия: конспект лекций автора Павел Николаевич Мишинькин

Из книги Общая хирургия: конспект лекций автора Павел Николаевич Мишинькин

Из книги Судебная медицина. Шпаргалка автора В. В. Баталина

Из книги Энциклопедия клинического акушерства автора Марина Геннадиевна Дрангой

Из книги О чем говорят анализы. Секреты медицинских показателей – для пациентов автора Евгений Александрович Гринь

Из книги Тайная мудрость человеческого организма автора Александр Соломонович Залманов Из книги Живые капилляры: Важнейший фактор здоровья! Методики Залманова, Ниши, Гогулан автора Иван Лапин

Противосвертывающая система крови. Физиологические антикоагулянты. Их роль в поддержании жидкого состояния крови.

Поддержание крови в жидком состоянии, контроль скорости активации факторов свертывания и реакций между ними, устранение всех видов тромбов, выполнивших свою задачу, входят в функции данной системы. Противосвертывающая система слагается из двух функциональных подсистем: антикоагулянтов и фибринолиза.

Система антикоагулянтов

Система представлена клетками ретикуло-эндотелиальной системы, гепатоцитами и гуморальными факторами. РЭС и гепатоциты удаляют из кровотока активированные факторы свертывания, включая фибриноген. Гуморальные факторы - это большая группа соединений (табл. 11.1 [показать]), которая в целом выполняет как бы двойственную функцию. С одной стороны она тормозит чрезмерную активацию процесса свертывания крови, с другой - оказывает разностороннее влияние на фибринолиз.

Естественные (эндогенные) антикоагулянты разделяют на первичные и вторичные. Первичные образуются в тканях и в форменных элементах крови. Они всегда присутствуют в плазме и действуют независимо от того, формируется или растворяется фибриновый сгусток. Вторичные - образуются в процессе свертывания крови и фибринолиза в результате протеолитического действия ферментов на свои субстраты.

Наиболее важными физиологическими первичными антикоагулянтами являются комплексы "антитромбин III - гепарин" и "протеин С - протеин S".

АТ-III ингибирует почти все ферментные плазменные факторы свертывания (IIа, Ха, ХIIа, ХIа, IХа), а также калликреин и несколько слабее - плазмин. Наибольшее его ингнбирующее действие проявляется в блокаде факторов свертывающего каскада образования протромбиназы и тромбина. Инактивация происходит по типу конкурентного обратимого ингибирования. Это взаимодействие происходит медленно, но в 1000 раз ускоряется в присутствии гепарина - основного кофактора антитромбина III. Терапевтический эффект от введения гепарина бывает чрезвычайно низким при недостатке АТ-III, что может быть обусловлено его усиленным потреблением или врожденным молекулярным дефектом. Антикоагулянтное действие комлекса АТ-III + гепарин наиболее активно проявляется на поверхности эндотелия, так как данный комплекс фиксируется на нем при помощи гепаран-сульфата - компонента субэндотелия.



Протеин С и его кофактор протеин S синтезируются в печени и являются витамин К-зависимыми антикоагулянтами. Активация комплекса "протеин С-протеин S" происходит под действием комплекса тромбин-тромбомодулин, фиксированного на поверхности эндотелия сосудистой стенки. Основной функцией комплекса "протеин С-протеин S" является ингибирование неферментных факторов свертывания Va и VIII:АС за счет протеолпза их тяжелых цепей. Кроме того, данный комплекс тормозит процесс фибринолиза.

Менее выраженной, но достаточно очевидной антикоагулянтной активностью обладает α 2 -макроглобулин. Он нейтрализует тромбин, химотрипсин, трипсин, коллагеназу, прекалликреин. Предотвращает переход фактора XII в ХIIа и плазминогена в плазмин.

Ряд антикоагулянтов образуется в процессе свертывания крови и фибринолиза, такие антикоагулянты называются вторичными. Одним из них является сам фибрин, обозначаемый в литературе, как антитромбин I. Он адсорбирует и выключает из процесса свертывания ф.Ха. Выраженным ингибирующим влиянием на самосборку фибрина и антиагрегационным действием обладают продукты деградации фибрина и фибриногена (ПДФ). К группе вторичных антикоагулянтов относят также метафакторы Vа и ХIа. Первый является ингибитором фактора Ха, второй - ингибирует комплекс ХIIа+ХIа.

Фибринолиз, его фазы.

Система фибринолиза – ферментативная система, расщепляющая нити фибрина, которые образовались в процессе свертывания крови, на растворимые комплексы. Система фибринолиза полностью противоположна системе свертывания крови. Фибринолиз ограничивает распространение свертывания крови по сосудам, регулирует проницаемость сосудов, восстанавливает их проходимость и обеспечивает жидкое состояние крови в сосудистом русле. В состав системы фибринолиза входят следующие компоненты:

1) фибринолизин (плазмин). Находится в неактивном виде в крови в виде профибринолизина (плазминоген). Он расщепляет фибрин, фибриноген, некоторые плазменные факторы свертывания крови;

2) активаторы плазминогена (профибринолизина). Они относятся к глобулиновой фракции белков. Различают две группы активаторов: прямого действия и непрямого действия. Активаторы прямого действия непосредственно переводят плазминоген в активную форму – плазмин. Активаторы прямого действия – трипсин, урокиназа, кислая и щелочная фосфатаза. Активаторы непрямого действия находятся в плазме крови в неактивном состоянии в виде проактиватора. Для его активации необходимы лизокиназа тканей, плазмы. Свойствами лизокиназы обладают некоторые бактерии. В тканях находятся тканевые активаторы, особенно много их содержится в матке, легких, щитовидной железе, простате;

3) ингибиторы фибринолиза (антиплазмины) – альбумины. Антиплазмины тормозят действие фермента фибринолизина и превращение профибринолизина в фибринолизин.

Процесс фибринолиза проходит в три фазы.

Во время I фазы лизокиназы, поступая в кровь, приводят проактиватор плазминогена в активное состояние. Эта реакция осуществляется в результате отщепления от проактиватора ряда аминокислот.

II фаза – превращение плазминогена в плазмин за счет отщепления липидного ингибитора под действием активатора.

В ходе III фазы под влиянием плазмина происходит расщепление фибрина до полипептидов и аминокислот. Эти ферменты получили название продуктов деградации фибриногена / фибрина, они обладают выраженным антикоагулянтным действием. Они ингибируют тромбин и тормозят процесс образования протромбиназы, подавляют процесс полимеризации фибрина, адгезию и агрегацию тромбоцитов, усиливают действие брадикинина, гистамина, ангеотензина на сосудистую стенку, что способствует выбросу из эндотелия сосудов активаторов фибринолиза.

Группы крови. Система AB0.

Группы крови - это генетически наследуемые признаки, не изменяющиеся в течение жизни при естественных условиях. Группа крови представляет собой определённое сочетание поверхностных антигенов эритроцитов (агглютиногенов) системы АВО.

Определение групповой принадлежности широко используется в клинической практике при переливании крови и её компонентов, в гинекологии и акушерстве при планировании и ведении беременности.

Система групп крови AB0 является основной системой, определяющей совместимость и несовместимость переливаемой крови, т. к. составляющие её антигены наиболее иммуногенны. Особенностью системы АВ0 является то, что в плазме у неиммунных людей имеются естественные антитела к отсутствующему на эритроцитах антигену. Систему группы крови АВ0 составляют два групповых эритроцитарных агглютиногена (А и В) и два соответствующих антитела - агглютинины плазмы альфа (анти-А) и бета (анти-В).

Различные сочетания антигенов и антител образуют 4 группы крови:

1. Группа 0 (I) - на эритроцитах отсутствуют групповые агглютиногены, в плазме присутствуют агглютинины альфа и бета;

2. Группа А (II) - эритроциты содержат только агглютиноген А, в плазме присутствует агглютинин бета;

3. Группа В (III) - эритроциты содержат только агглютиноген В, в плазме содержится агглютинин альфа;

4. Группа АВ (IV) - на эритроцитах присутствуют антигены А и В, плазма агглютининов не содержит.

Определение групп крови проводят путём идентификации специфических антигенов и антител (двойной метод или перекрёстная реакция).

Несовместимость крови наблюдается, если эритроциты одной крови несут агглютиногены (А или В), а в плазме другой крови содержатся соответствующие агглютинины (альфа- или бета), при этом происходит реакция агглютинации. Переливать эритроциты, плазму и особенно цельную кровь от донора к реципиенту нужно строго соблюдая групповую совместимость. Чтобы избежать несовместимости крови донора и реципиента, необходимо лабораторными методами точно определить их группы крови. Лучше всего переливать кровь, эритроциты и плазму той же группы, которая определена у реципиента. В экстренных случаях эритроциты группы 0, но не цельную кровь!, можно переливать реципиентам с другими группами крови; эритроциты группы А можно переливать реципиентам с группой крови А и АВ, а эритроциты от донора группы В - реципиентам группы В и АВ.

Карты совместимости групп крови (агглютинация обозначена знаком «+»)

Кровь донора Кровь реципиента
0 (I) A (II) B (III) AB (IV)
0 (I) - + + +
A (II) + - + +
B (III) + + - +
AB (IV) + + + -
Эритроциты донора Кровь реципиента
0 (I) A (II) B (III) AB (IV)
0 (I) - - - -
A (II) + - + -
B (III) + + - -
AB (IV) + + + -

Групповые агглютиногены находятся в строме и оболочке эритроцитов. Антигены системы АВО выявляются не только на эритроцитах, но и на клетках других тканей или даже могут быть растворёнными в слюне и других жидкостях организма. Развиваются они на ранних стадиях внутриутробного развития, у новорожденного уже находятся в существенном количестве. Кровь новорожденных детей имеет возрастные особенности - в плазме могут ещё не присутствовать характерные групповые агглютинины, которые начинают вырабатываться позже (постоянно обнаруживаются после 10 месяцев) и определение группы крови у новорождённых в этом случае проводится только по наличию антигенов системы АВО.

Коагуляционный гемостаз, его фазы. Противосвертывающая и фибринолитическая системы, их роль в поддержании жидкого состояния крови.

Коагуляционный гомеостаз . В нем участвуют: поврежденная стенка сосуда, тромбоциты и плазменные факторы свертывания.

Плазменные факторы:

I - фибриноген

II – протромбин

III – тканевой тромбопластин

IV – катионы кальция

V и VI – проакцилерин и акцилерин

VII - конвертин

VIII – антигемофильный фактор А

IX – антигемофильный фактор В

X – фактор Стюарта-Брауэра

XI – антигемофильный фактор С

XII – фактор Хагемана

XIII – фибринстабилизирующий фактор

1) Образование активной протромбиназы (внешним или внутренним путем)

2) Под влиянием протромбиназы протромбин превращается в тромбин.

3) Тромбин способствует превращению фибиногена в фибрин. Сначала это растворимы фибрин (фибрин мономер), который под влиянием 13 фактора превращается в полимер.

Внешний путь образования протромбиназы:

Начинается с III фактора из поврежденной сосудистой стенки.

3+7→ 10→ (10а+5+Са+тф3) активная протромбиназа

Внутренний путь:

Начинается с плазменного 7 фактора, который всегда присутствует в крови. 12й активируется при контакте с коллагеном и сразу адгезируется в месте повреждения. 7а в циркуляцию не выходит: иначе в течение 5 мин произошло бы полное внутрисосудистое свертывание крови.

Коллаген→ 7→7а→ 11→ (11а + кининоген+каллекреин)→ 9→ (9а+8+Са+тф3) антигемофильный комплекс→10 → (10а+5+Са+тф3) активная протромбиназа

Противосвертывающая система крови.

Физиологические антикоагулянты поддерживают кровь в жидком состоянии и ограничивают процесс тромбообразования. К ним относятся антитромбин III, гепарин, протеины С и S, альфа-2-макроглобулин, нити фибрина. Антитромбин III является альфа2-глобулином и создает 75 % всей антикоагу-лянтной активности плазмы. Он является основным плазменным кофактором гепарина, ингибирует активность тромбина, факторов Ха, IХа, VII, ХПа. Его концентрация в плазме достигает 240 мкг/мл. Гепарин - сульфатированный полисахарид - трансформирует антитромбин III в антикоагулянт немедленного действия, в 1000 раз усиливая его эффекты.



Протеины С и S- синтезируются в печени. Их синтез активирует витамин К. Протеин С высвобождает активатор плазминогена из стенки сосуда, инактивирует активированные факторы VIII и V. Протеин S снижает способность тромбина активировать факторы VIII и V. Нити фибрина обладают антитромбинным действием, так как адсорбируют до 80-85 % тромбина крови. В результате тромбин концентрируется в формирующемся сгустке и не распространяется по току крови.

Регуляция агрегации тромбоцитов сосудистой стенкой. Адгезии тромбоцитов к неповрежденной сосудистой стенке препятствуют: эндотелиальные клетки; гепариноподобные соединения, секретируемые тучными клетками соединительной ткани; синтезируемые эндотелиальными и гладкомышеч-ными клетками сосудов - простациклин I2, оксид азота (NO), тромбомодулин, тканевый активатор плазминогена и эктоэнзимы (АДФаза), ингибитор тканевого фактора (ингибитор внешнего пути свертывания крови).

Простациклин I2 - мощный ингибитор агрегации тромбоцитов, образуется в венозных и артериальных эндотелиальных клетках из арахидоновой кислоты. Между антиагрегационной способностью простациклина и про-агрегационной субстанцией - тромбоксаном А2 тромбоцитов в нормальных условиях имеет место динамическое равновесие, регулирующее агрегацию тромбоцитов. При преобладании эффекта простациклина над тромбоксаном А2 агрегации томоцитов не происходит. Напротив, сниженная или утраченная продукция простациклина участком эндотелия может быть одной из причин агрегации кровяных пластинок к стенке сосуда и формирования тромба. Синтез простациклинов в эндотелии усиливается при стрессе под влиянием тромбина.

Тромбомодулин - рецептор тромбина на эндотелии сосудов - взаимодействует с тромбином и активирует белок С, обладающий способностью высвобождать тканевый активатор плазминогена из стенки сосуда. Дефицит белка С повышает свертываемость крови.

NO образуется в эндотелиальных клетках и угнетает адгезию и рекрутирование тромбоцитов. Его эффект усиливается взаимодействием с проста-циклином. Атеросклеротические повреждения сосуда, гиперхолестерине-мия понижают способность эндотелия к продукции оксида азота, повышая риск форм ирования тромбов.
Система фибринолиза - антипод системы свертывания крови. Она обеспечивает растворение фибриновых нитей, в результате чего в сосудах восстанавливается нормальный кровоток. Она имеет строение, аналогичное системе свертывания крови:
-компоненты системы фибринолиза., находящиеся в периферической крови;
-органы, продуцирующие и утилизирующие компоненты системы фибринолиза;
-органы, разрушающие компоненты системы фибринолиза;
-механизмы регуляции.
Система фибринолиза в норме оказывает строго локальное действие, т. к. компоненты ее адсорбируются на фибриновых нитях под действием фибринолиза нити растворяются, в процессе гидролиза образуются вещества, растворимые в плазме - продукты деградации фибрина (ПДФ) - они выполняют функцию вторичных антикоагулянтов, а затем выводятся из организма.
Значение системы фибринолиза.
1. Растворяет нити фибрина, обеспечивая реканализацию сосудов.
2. Поддерживает кровь в жидком состоянии

Компоненты системы фибринолиза:
-плазмин (фибринолизин);
-активаторы фибринолиза;
-ингибиторы фибринолиза.

Плазмин - вырабатывается в неактивном состоянии в виде плазминогена. По своей природе это белок глобулиной фракции, вырабатывается в печени. Много его в сосудистой стенке. В гранулоцитах, эндофилах, легких, матке, предстательной и щитовидной железах.
В активном состоиянии плазмин адсорбируется на фибриновых нитях и действует как протеолитический фермент. В больших количествах плазмин может мутировать и фибриноген, образуя продукты деградации фибрина и фибриногена (ПДФФ), которые тоже являются вторичными антикоагулянтами. При повышении количества плазмина, уменьшается количество фибриногена, возникает гипо- или афибринолитическое кровотечение.
Активаторы фибринолиза - превращают плазминоген в плазмин. Делятся на плазменные и тканевые:
Плазменные активаторы включают 3 группы веществ: различные фосфатазы плазмы крови - они находятся в активном состоянии - это активные (прямые) активаторы (физиологические). Кроме того, трипсин: вырабатывается в поджелудочное железе, попадает в 12-перстную кишку, там всасывается в кровь. В норме трипсин находится в крови в виде следов. При поражении поджелудочной железы концентрация трипсина в крови резко возрастает. Он полностью расщепляет плазминоген, что приводит к резкому снижению фибринолитической активности.
Активность урокиназы - она вырабатывается в юкстагломерулярном аппарате почек. Встречается в моче, поэтому моча может обладать слабой фибринолитической активностью.
Активаторы бактериального происхождения - стрепто- и стафиллокиназы.
Непрямые активаторы - находятся в плазме в неактивном состоянии, для их активации нужны белки лизокиназы: тканевые мукокиназы - активируются при травме тканей; плазменные лизокиназы - самый важный XII фактор свертывания крови.
Тканевые активаторы - находятся в тканях.
Их особенности:
-тесно связаны с клеточной структурой и освобождаются лишь при повреждении ткани;
-всегда находятся в активном состоянии;
-сильное, но ограниченное действие.
Ингибиторы делятся на:
-ингибиторы, препятствующие превращению плазминогена в плазмин;
-препятствующие действию активного плазмина.
Сейчас существуют искусственные ингибиторы, которые используются для борьбы с кровотечениями: Е-аминокапроновая кислота, контрикал, трасилол.

Фазы ферментативного фибринолиза:
I фаза: активация неактивных активаторов. При травме ткани освобождаются тканевые лизокиназы, при контакте с поврежденными сосудами активируются плазменные лизокиназы (XII плазменный фактор), т. е. происходит активация активаторов.
II фаза: активация плазмиогена. Под действием активаторов от плазминогена отщепляется тормозная группа и он становится активным.
III фаза: плазмин расщепляет фибриновые нити до ПДФ. Если участвуют уже активные активаторы (прямые) - фибринолиз протекает в 2 фазы.

Понятие о ферментативном фибринолизе
Процесс неферментативного фибринолиза идет без плазмина. Действующее начало - комплекс гепарина С. Данный процесс идет под контролем следующих веществ:
-тромбогенные белки - фибриногеном, XIII плазменным фактором, тромбином;
-макроэрги - АДФ поврежденных тромбоцитов;
-компоненты фибринолитической системы: плазмином, плазминогеном, активаторами и ---ингибиторами фибринолиза;
-гормонами: адреналином, инсулином, тироксином.
Суть: комплексы гепарина действуют на нестабильные фибриновые нити (фибрин S): после действия фибрино-стабилизирующего фактора комплексы гепарина (на фибрин J) не действуют. При этом виде фибринолиза не идет гидролиз фибриновых нитей, а идет информационное изменение молекулы (фибрин S из фибриллярной формы переходит в тобулярную)

Взаимосвязь системы свертывания крови и системы фибринолиза
В нормальных условиях взаимодействие системы свертывания крови и системы фибринолиза происходит таким образом: в сосудах постоянно идет микросвертывание, что вызвано постоянным разрушением старых тромбоцитов и выделением из них в кровь тромбоцитарных факторов. В результате образуется фибрин, который останавливается при образовании фибрина S, который тонкой пленкой выстилает стенки сосудов. Нормализуя движение крови и улучшая ее реалогические свойства.
Система фибринолиза регулирует толщину этой пленки, от которой зависит проницаемость сосудистой стенки. При активации свертывающей системы активируется и система фибринолиза.

36 36. Анализ цикла сердечной деятельности. Основные показатели работы сердца.

Сердечный цикл состоит из систолы и диастолы. Систола включает в себя четыре фазы - фазу асинхронного и фазу изометрического сокращения, которые составляют период напряжения, фазу максимального и фазу редуцированного изгнания, составляющие период изгнания.

Диастола подразделяется на два периода - период расслабления и период наполнения. В период расслабления входит протодиастолический интервал и фаза изометрического расслабления, в период наполнения - фаза быстрого наполнения, фаза медленного наполнения и систола предсердий.

Систола желудочков - период сокращения желудочков, что позволяет протолкнуть кровь в артериальное русло.

В сокращении желудочков можно выделить несколько периодов и фаз:

Период напряжения - характеризуется началом сокращения мышечной массы желудочков без изменения объема крови внутри них.

Асинхронное сокращение - начало возбуждения миокарда желудочков, когда только отдельные волокна вовлечены. Изменения давления в желудочках хватает для закрытия предсердно-желудочковых клапанов в конце этой фазы.

Изоволюметрическое сокращение - вовлечен практически весь миокард желудочков, но изменения объема крови внутри них не происходит, так как закрыты выносящие (полулунные - аортальный и легочный) клапаны. Термин изометрическое сокращение не совсем точен, так как в это время происходит изменение формы (ремоделирование) желудочков, натяжение хорд.

Период изгнания - характеризуется изгнанием крови из желудочков.

Быстрое изгнание - период от момента открытия полулунных клапанов до достижения в полости желудочков систолического давления - за этот период выбрасывается максимальное количество крови.

Медленное изгнание - период, когда давление в полости желудочков начинает снижаться, но все еще больше диастолического давления. В это время кровь из желудочков продолжает двигаться под действием сообщенной ей кинетической энергии, до момента выравнивания давления в полости желудочков и выносящих сосудов.

В состоянии спокойствия желудочек сердца взрослого человека за каждую систолу выбрасывает от 60 мл крови (ударный объем, СОК). Сердечный цикл длится до 1 с, соответственно, сердце делает от 60 сокращений в минуту (частота сердечных сокращений, ЧСС). Нетрудно подсчитать, что даже в состоянии покоя сердце перегоняет 4 л крови в минуту (минутный объем кровотока, МОК). Во время максимальной нагрузки ударный объём сердца тренированого человека может превышать 200 мл, пульс - превышать 200 ударов в минуту, а циркуляция крови может достигать 40 л в минуту.

Диастола - период времени, в течение которого сердце расслабляется для приема крови. В целом характеризуется снижением давления в полости желудочков, закрытием полулунных клапанов и открытием предсердно-желудочковых клапанов с продвижением крови в желудочки.

Диастола желудочков

Протодиастола - период начала расслабления миокарда с падением давления ниже, чем в выносящих сосудах, что приводит к закрытию полулунных клапанов.

Изоволюметрическое расслабление - аналогична фазе изволюметрического сокращения, но с точностью до наоборот. Происходит удлинение мышечных волокон, но без изменения объема полости желудочков. Фаза заканчивается открытием предсердно-желудочковых (митрального и трехстворчатого) клапанов.

Период наполнения

Быстрое наполнение - желудочки стремительно восстанавливают свою форму в расслабленном состоянии, что значительно снижает давление в их полости и засасывает кровь из предсердий.

Медленное наполнение - желудочки практически полностью восстановили свою форму, кровь течет уже из-за градиента давления в полых венах, где оно выше на 2-3 мм рт. ст.

Систола предсердий

Является завершающей фазой диастолы. При нормальной частоте сердечных сокращений вклад сокращения предсердий невелик (около 8 %), так как за относительно длинную диастолу кровь уже успевает наполнить желудочки. Однако, с увеличением частоты сокращений, в основном снижается длительность диастолы и вклад систолы предсердий в наполнение желудочков становится весьма существенным.

Основные показатели работы сердца

ЧСС 80- тахикардия ↓60- брадикардия

СОК- объем крови выброшенный из желудочка за 1 систолу (60-70 мл в норме для обоих желудочков)

МОК- СОК *ЧСС 4,5-5л в норм. Возрастает до 25-30л при физической нагрузке.

37 Клапанный аппарат сердца. Анализ состояния клапанов. Тоны.

В сердце различают два вида клапанов-атриовентрикулярные (предсердно-желудочковые) и полулунные. Атриовентрикулярные клапаны располагаются между предсердиями и соответствующими желудочками. Левое предсердие от левого желудочка отделяет двустворчатый клапан. На границе между правым предсердием и правым желудочком находится трехстворчатый клапан. Края клапанов соединены с папиллярными мышцами желудочков тонкими и прочными сухожильными нитями, которые провисают в их полость. Полулунные клапаны отделяют аорту от левого желудочка и легочный ствол от правого желудочка. Каждый полулунный клапан состоит из трех створок (кармашки), в центре которых имеются утолщения - узелки. Эти узелки, прилегая, друг к другу, обеспечивают полную герметизацию при закрытии полулунных клапанов. Значение клапанного аппарата в движении крови через камеры сердца. Во время диастолы предсердий атриовентрикулярные клапаны открыты и кровь, поступающая из соответствующих сосудов, заполняет не только их полости, но и желудочки. Во время систолы предсердий желудочки полностью заполняются кровью. При этом исключается обратное движение крови в полые и легочные вены. Это связано с тем, что в первую очередь сокращается мускулатура предсердий, образующая устья вен. По мере наполнения полостей желудочков кровью створки атриовентрикулярных клапанов плотно смыкаются и отделяют полость предсердий от желудочков. В результате сокращения папиллярных мышц желудочков в момент их систолы сухожильные нити створок атриовентрикулярных клапанов натягиваются и не дают им вывернуться в сторону предсердий. К концу систолы желудочков давление в них становится больше давления в аорте и легочной стволе. Это способствует открытию полулунных клапанов, и кровь из желудочков поступает в соответствующие сосуды. Во время диастолы желудочков давление в них резко падает, что создает условия для обратного движения крови в сторону желудочков. При этом кровь заполняет кармашки полулунных клапанов и обусловливает их смыкание. Сердечные тоны - это звуковые явления, возникающие в работающем сердце. Различают два тона: I-систолический и II -диастолический. Систолический тон. В происхождении этого тона принимают участие главным образом атриовентрикулярные клапаны. Во время систолы желудочков атриовентрикулярные клапаны

закрываются, и колебания их створок и прикрепленных к ним сухожильных нитей обусловливают I тон. Кроме того, в происхождении I тона принимают участие звуковые явления, которые возникают при сокращении мышц желудочков. По своим звуковым особенностям I тон протяжный и низкий. Диастолический тон возникает в начале диастолы желудочков во время протодиастолической фазы, когда происходит закрытие полулунных клапанов. Колебание створок клапанов при этом является источником звуковых явлений. По звуковой характеристике II тон короткий и высокий

38.Автоматия – это способность сердца сокращаться под влиянием импульсов, возникающих в нем самом. Обнаружено, что в клетках атипического миокарда могут генерироваться нервные импульсы. У здорового человека это происходит в области синоатриального узла, так как эти клетки отличаются от других структур по строению и свойствам. Они имеют веретеновидную форму, расположены группами и окружены общей базальной мембраной. Эти клетки называются водителями ритма первого порядка, или пейсмекерами. В них с высокой скоростью идут обменные процессы, поэтому метаболиты не успевают выноситься и накапливаются в межклеточной жидкости. Также характерными свойствами являются низкая величина мембранного потенциала и высокая проницаемость для ионов Na и Ca Отмечена довольно низкая активность работы натрий-калиевого насоса, что обусловлено разностью концентрации Na и K.

Автоматия возникает в фазу диастолы и проявляется движением ионов Na внутрь клетки. При этом величина мембранного потенциала уменьшается и стремится к критическому уровню деполяризации – наступает медленная спонтанная диастолическая деполяризация, сопровождающаяся уменьшением заряда мембраны. В фазу быстрой деполяризации возникает открытие каналов для ионов Na и Ca, и они начинают свое движение внутрь клетки. В результате заряд мембраны уменьшается до нуля и изменяется на противоположный, достигая +20–30 мВ. Движение Na происходит до достижения электрохимического равновесия по ионам Na, затем начинается фаза плато. В фазу плато продолжается поступление в клетку ионов Ca. В это время сердечная ткань невозбудима. По достижении электрохимического равновесия по ионам Ca заканчивается фаза плато и наступает период реполяризации – возвращения заряда мембраны к исходному уровню.

Потенциал действия синоатриального узла отличается меньшей амплитудой и составляет ±70–90 мВ, а обычный потенциал ровняется ±120–130 мВ.

В норме потенциалы возникают в синоатриальном узле за счет наличия клеток – водителей ритма первого порядка. Но другие отделы сердца в определенных условиях также способны генерировать нервный импульс. Это происходит при выключении синоатриального узла и при включении дополнительного раздражения.

При выключении из работы синоатриального узла наблюдается генерация нервных импульсов с частотой 50–60 раз в минуту в атриовентрикулярном узле – водителе ритма второго порядка. При нарушении в ат-риовентрикулярном узле при дополнительном раздражении возникает возбуждение в клетках пучка Гиса с частотой 30–40 раз в минуту – водитель ритма третьего порядка.Градиент автоматии – это уменьшение способности к автоматии по мере удаления от синоатриального узла, то есть от места непосредственной генерализации импульсов.

39. Гетеро- и гомеометpическая регуляция pаботы сеpдца, их механизмы и условия осуществления.

Гетерометрическая - осуществляется в ответ на изменение длины волокон миокарда. Инотропные влияния на сердце, обусловленные эффектом Франка- Старлинга, могут проявляться при различных физиологических состояниях. Они играют ведущую роль в увеличении сердечной деятельности при усиленной мышечной работе, когда сокращающиеся скелетные мышцы вызывают периодическое сжатие вен конечностей, что приводит к увеличению венозного притока за счет мобилизации резерва депонированной в них крови. Отрицательные инотропные влияния по указанному механизму играют существенную роль в изменениях кровообращения при переходе в вертикальное положение (ортостатическая проба). Эти механизмы имеют большое значение для согласования изменений сердечного выброса и притока крови по венам малого круга, что предотврашает опасность развития отека легких. Гетерометрическая регуляция сердца может обеспечить компенсацию циркуляторной недостаточности при его пороках.

Гомеометрическая - осуществляется при их сокращениях в изометрическом режиме. Термином «гомеометрическая регуляция» обозначают миогенные механизмы, для реализации которых не имеет значения степень конечно-диастолического растяжения волокон миокарда. Среди них наиболее важным является зависимость силы сокращения сердца от давления в аорте (эффект Анрепа). Этот эффект состоит в том, что увеличение давления в аорте первоначально вызывает снижение систолического объема сердца и увеличение остаточного конечного диастолического объема крови, вслед за чем происходит увеличение силы сокращений сердца и сердечный выброс стабилизируется на новом уровне силы сокращений.

*закон Франка-Старлинга: «Сила сокращения желудочков сердца, измеренная любым способом, является функцией длины мышечных волокон перед сокращением»

40.Влияние блуждающих и симпатических нервов, и их медиаторов на сердце.

И блуждающие, и симпатические нервы оказывают на сердце 5 влияний:

хронотропный (изменяют частоту сердечных сокращений);

инотропный (изменяют силу сердечных сокращений);

батмотропный (влияют на возбудимость миокарда);

дромотропный (влияет на проводимость);

тонотропный (влияют на тонус миокарда);

То есть они оказывают влияние на интенсивность обменных процессов.

Парасимпатическая нервная система - отрицательные все 5 явлений; симпатическая нервная система - все 5 явлений положительные.

Влияние парасимпатических нервов.

Отрицательное влияние n.vagus связано с тем, что его медиатор ацетилхолин взаимодействует с М-холинорецепторами.

Отрицательное хронотропное влияние - за счёт взаимодействия между ацетилхолином с М-холинорецепторами синоартиального узла. в результате открываются калиевые каналы (повышается проницаемость для К+), в результате уменьшается скорость медленной диастолической спонтанной поляризации, в итоге уменьшается количество сокращений в минуту (за счёт увеличения продолжительности действия потенциала действия).

Отрицательное инотропное влияние - ацетилхолин взаимодействует с М-холинорецепторами кардиомиоцитов. В результате тормозится активность аденилатциклазы и активируется гуанилатциклазный путь. Ограничение аденилатциклазного пути уменьшает окислительное фосфорилирование, уменьшается количество макроэргических соединений, в итоге уменьшается сила сердечных сокращений.

Отрицательное батмотропное влияние - ацетилхолин взаимодействует и М-холинорецепторами всех образований сердца. В резултате увеличивается проницаемость клеточной мембраны миокардиоцитов для К+. Величина мембранного потенциала увеличивается (гиперполяризация). Разность между мембранным потенциалом и Е критическим увеличивается, а эта разность показатель порога раздражения. Порог раздражения увеличивается - возбудимость уменьшается.

Отрицательное дромоторопное влияние - т. к. возбудимость уменьшается, то малые круговые токи медленнее распространяются, поэтому уменьшается скорость проведения возбуждения.

Отрицательный тонотропный эффект - под действием n.vagus не происходит активации обменных процессов.

Влияние симпатических нервов.

Медиатор норадреналин взаимодействует с бетта 1-адренорецепротами синоатриального узла. в результате открываются Са2+-каналы - повышается проницаемость для К+ и Са2+. В результате увеличивается скорость мелоенной спонтанной диастолической деполяризации. Продолжительность потенциала действия уменьшается, соответственно частота сердечных сокращений увеличивается - положительный хронотропный эффект.

Положительный инотропный эффект - норадренолин взаимодействует с бетта1- рецепторами кардиоцитов. Эффекты:

активируется фермент аденилатциклаза, т. о. стимулируется окислительное фосфорилирование в клетке с образованием, увеличивается синтез АТФ - увеличивается сила сокращений.

увеличивается проницаемость для Са2+, который участвует в мышечных сокращениях, обеспечивая образование актомиозиновых мостиков.

под действием Са2+ увеличивается активность белка кальмомодулина, который обладает сродством к тропонину, что увеличивает силу сокращений.

активируются Са2+-зависимые протеинкиназы.

под действием норадреналина АТФ-азная активность миозина (фермент АТФ-аза). Это самый важный для симпатической нервной системы фермент.

Положительный батмотропный эффект: норадреналин взаимодействует с бетта 1-адренорецепорами всех клеток, увеличивается проницаемость для Na+ и Ca2+ (эти ионы поступают внутрь клетки), т. о. возникает деполяризация клеточной мембраны. Мембранный потенциал приближается к Е критическому (критический уровень деполяризации). Это снижает порог раздражения, а возбуждаемость клетки увеличивается.

Положительное дромотропное влияние - вызвано повышением возбудимости.

Положительное тонотропное влияние - связано с адаптационно-трофической функцией симпатической нервой системы.

Для парасимпатической нервной системы наиболее важен отрицательный хронотропный эфект, а для симпатической нервной системы - положительное инотропное и тонотропное влияние.

41.Рефлекторная регуляция работы сердца. Рефлексогенные внутрисердечные и сосудистые зоны и их значение в регуляции деятельности сердца.

Рефлекторные изменения работы сердца возникают при раздражении различных рецепторов. Особое значение в регуляции работы сердца имеют рецепторы, расположенные в некоторых участках сосудистой системы. Эти рецепторы возбуждаются при изменении давления крови в сосудах или при воздействии гуморальных (химических) раздражителей. Участки, где сосредоточены такие рецепторы, получили название сосудистых рефлексогенных зон. Наиболее значительна роль рефлексогенных зон, расположенных в дуге аорты и в области разветвления сонной артерии. Здесь находятся окончания центростремительных нервов, раздражение которых рефлекторно вызывает урежение сердечных сокращений. Эти нервные окончания представляют собой барорецепторы. Естественным их раздражителем служит растяжение сосудистой стенки при повышении давления в тех сосудах, где они расположены. Поток афферентных нервных импульсов от этих рецепторов повышает тонус ядер блуждающих нервов, что приводит к замедлению сердечных сокращений. Чем выше давление крови в сосудистой рефлексогенной зоне, тем чаще возникают афферентные импульсы.

Рефлекторные изменения сердечной деятельности можно вызвать раздражением рецепторов и других кровеносных сосудов. Например, при повышении давления в легочной артерии замедляется работа сердца. Можно изменить сердечную деятельность и путем раздражения рецепторов сосудов многих внутренних органов.

Обнаружены также рецепторы в самом сердце: эндокарде, миокарде и эпикарде; их раздражение рефлекторно изменяет и работу сердца, и тонус сосудов.

В правом предсердии и в устьях полых вен имеются механорецепторы, реагирующие на растяжение (при повышении давления в полости предсердия или в полых венах). Залпы афферентных импульсов от этих рецепторов проходят по центростремительным волокнам блуждающих нервов к группе нейронов ретикулярной формации ствола мозга, получивших название «сердечно-сосудистый центр». Афферентная стимуляция этих нейронов приводит к активации нейронов симпатического отдела автономной нервной системы и вызывает рефлекторное учащение сердечных сокращений. Импульсы, идущие в ЦНС от механорецепторов предсердий, влияют и на работу других органов.

Классический пример вагального рефлекса описал в 60-х годах прошлого века Гольц: легкое поколачивание по желудку и кишечнику лягушки вызывает остановку или замедление сокращений сердца (рис. 7.16). Остановка сердца при ударе по передней брюшной стенке наблюдалась также у человека. Центростремительные пути этого рефлекса идут от желудка и кишечника по чревному нерву в спинной мозг и достигают ядер блуждающих нервов в продолговатом мозге. Отсюда начинаются центробежные пути, образованные ветвями блуждающих нервов, идущими к сердцу. К числу вагальных рефлексов относится также глазосердечный рефлекс Ашнера (урежение сердцебиений на 10-20 в минуту при надавливании на глазные яблоки).

Рефлекторное учащение и усиление сердечной деятельности наблюдаются при болевых раздражениях и эмоциональных состояниях: ярости, гневе, радости, а также при мышечной работе. Изменения сердечной деятельности при этом вызываются импульсами, посту­пающими к сердцу по симпатическим нервам, а также ослаблением тонуса ядер блуждающих нервов.

42. Линейная и объемная скорость кровотока в разных участках кровеносного русла, зависимость от сечения русла и диаметра. Время круговорота крови. Объемная скорость кровотока (VОБ.) – это количество крови, проходящей через поперечное сечение сосуда в единицу времени. Она зависит от разности давлений в начале и конце сосуда и сопротивления току крови. Объёмная скорость кровотока в сердечно-сосудистой системе составляет 4-6 л/мин, она распределяется по регионам и органам в зависимости от интенсивности их метаболизма в состоянии функционального покоя и при деятельности (при активном состоянии тканей кровоток в них может возрастать в 2-20 раз). На 100 г ткани объем кровотока в покое равен в мозге 55, в сердце - 80, в печени - 85, в почках - 400, в скелетных мышцах - 3 мл/мин. В сосудах различают скорость кровотока объемную и линейную. Объемная скорость кровотока - количество крови, протекающее через поперечное сечение сосуда в единицу времени. Объемная скорость кровотока через сосуд прямо пропорциональна давлению крови в нем и обратно пропорциональна сопротивлению току крови в этом сосуде. Линейная скорость кровотока (VЛИН.) – это расстояние, которое проходит частица крови в единицу времени. Она зависит от суммарной площади поперечного сечения всех сосудов, образующих участок сосудистого русла. В кровеносной системе наиболее узким участком является аорта. Здесь наибольшая линейная скорость кровотока, составляющая 0,5-0,6 м/сек. В артериях среднего и мелкого калибра она снижается до 0,2-0,4 м/сек. Суммарный просвет капиллярного русла в 500-600 раз больше, чем аорты. Поэтому скорость кровотока в капиллярах уменьшается до 0,5 мм/сек. Замедление тока крови в капиллярах имеет большое физиологическое значение, так как в них происходит транскапиллярный обмен. В крупных венах линейная скорость кровотока вновь возрастает до 0,1-0,2 м/сек. Полный оборот кровообращения рассматривается как интегральный показатель – время за которое частица в крови пройдет малый и большой круги кровобращ, он равен 25-30 сек.

43 Особенности течения крови по венам. Кровяное депо. Роль венозного возврата в регуляции сердечного выброса.

Многие годы вены рассматривались только как пути продвижения крови по направлению к сердцу, но, как выяснилось, они выполняют и другие специальные функции, необходимые для нормального кровообращения. Особенно важной является их способность к сокращению и расширению. Это позволяет венозным сосудам депонировать большее или меньшее количество крови в зависимости от потребностей гемодинамики. Периферические вены способствуют движению крови к сердцу благодаря так называемому венозному насосу и, таким образом, принимают участие в регуляции сердечного выброса. Чтобы понять разнообразные функции вен, необходимо, прежде всего, составить представление о венозном давлении и факторах, его определяющих. Из вен большого круга кровообращения кровь поступает в правое предсердие. Давление в правом предсердии называют центральным венозным давлением. Депо крови. Некоторые отделы сосудистой системы являются настолько емкими и вместительными, что имеют даже специальное название - депо крови. Это такие органы и сосудистые области, как: селезенка, способная резко уменьшиться в размерах и выделить в сосудистую систему до 100 мл крови; печень, синусы которой могут выделить сотни миллилитров крови; крупные внутрибрюшные вены, вклад которых в общий кровоток может составить 300 мл крови; подкожные венозные сплетения, также способные добавить сотни миллилитров крови в общий кровоток. Сердце и легкие, хотя и не являются частью венозной емкостной системы, но тоже должны рассматриваться как депо крови. Сердце, например, под действием симпатической стимуляции резко уменьшается в размерах и выбрасывает дополнительно 50-100 мл крови в общий кровоток. Вклад легких в поддержание объема циркулирующей крови достигает 100-200 мл в ответ на снижение давления в системе легочных сосудов. Венозный возврат крови к сердцу складывается из объемного кровотока многочисленных сосудистых областей различных периферических органов и тканей.Из этого следует, что регуляция сердечного выброса является результатом регуляции местного кровотока органов и тканей местными механизмами. Когда давление в правом предсердии падает ниже нуля, т.е. ниже атмосферного, дальнейшее увеличение венозного возврата прекращается. К тому моменту, когда давление в правом предсердии снижается до - 2 мм рт. ст., начинается плато на кривой венозного возврата. Венозный возврат остается на этом постоянном уровне, даже если давление в правом предсердии снизится до -20 мм рт. ст. и ниже (до -50 мм рт. ст.). Это связано с коллапсом (спадением) вен при переходе их из брюшной полости в грудную. Отрицательное давление в правом предсердии, засасывающее кровь, текущую по венам, приводит к слипанию стенок вен в том месте, где они вступают в грудную полость. Это препятствует увеличению тока крови из периферических вен в направлении сердца. Следовательно, даже очень отрицательное давление в правом предсердии не может существенно увеличить венозный возврат крови к сердцу по сравнению с той величиной, которая соответствует нормальному предсердному давлению 0 мм рт. ст.

44 Система микроциркуляции. Факторы влияющие на капиллярный кровоток. Механизмы обмена веществ через капиллярную стенку. К микроциркуляторному руслу относят сосуды: распределители капиллярного кровотока (терминальные артериолы, метартериолы, артериовенулярные анастомозы, прекапиллярные сфинктеры) и обменные сосуды (капилляры и посткапиллярные венулы). В месте отхождения капилляров от метартериол имеются одиночные гладкомышечные клетки, получившие функциональное название «прекапиллярные сфинктеры». Стенки капилляров гладкомышечных элементов не содержат. В капиллярах наиболее благоприятные условия для обмена между кровью и тканевой жидкостью: высокая проницаемость стенки капилляров для воды и растворенных в плазме веществ; большая обменная поверхность капилляров; гидростатическое давление, способствующее фильтрации на артериальном и реабсорбции на венозном концах капилляра; медленная линейная скорость кровотока, обеспечивающая до

Кровь Кровь в живом организме находится в жидком состоянии, несмотря на наличие очень мощной свертывающей системы. Многочисленные исследования, направленные на выяснение причин и механизмов поддержания крови в жидком состоянии во время циркуляции ее в кровяном русле, позволили в значительной степени выяснить природу противосвертывающей системы крови . Оказалось, что в образовании ее, так же как и в формировании системы свертывания крови, участвует ряд факторов плазмы крови, тромбоцитов и тканей. К ним относят различные антикоагулянты: анти-тромбопластины, антитромбины, а также фибринолитическую систему крови. Считается, что в организме существуют специфические ингибиторы для каждого фактора свертывания крови (антиакцелерин, антиконвертин и др.). Снижение активности этих ингибиторов повышает свертываемость крови и способствует образованию тромбов. Повышение активности ингибиторов, наоборот, затрудняет свертывание крови и может сопровождаться развитием геморрагии. Сочетание явлений рассеянного тромбоза и геморрагии может быть обусловлено нарушением регуляторных взаимоотношений свертывающей и противосвертывающей систем.

В кровеносных сосудах имеются хеморецепторы, способные реагировать на появление в крови активного тромбина. Хеморецепторы связаны с ней-рогуморальным механизмом, регулирующим образование антикоагулянтов. Таким образом, если тромбин появляется в циркулирующей крови в условиях нормального нейрогуморального контроля, то в этом случае он не только не вызывает свертывания крови, но, напротив, рефлекторно стимулирует образование антикоагулянтов и тем самым выключает свертывающий механизм.

Наиболее быстро действующими компонентами противосвертывающей системы являются антитромбины. Они относятся к так называемым прямым антикоагулянтам, так как находятся в активной форме, а не в виде предшественников. Предполагают, что в плазме крови существует около шести различных антитромбинов. Наибольшая антитромбиновая активность присуща антитромбину III; он сильно активируется в присутствии гепарина, обладающего большим отрицательным зарядом. Гепарин способен связываться со специфическим катионным участком антитромбина III, вызывая конформационные изменения его молекулы. В результате этого изменения антитромбин III приобретает возможность связываться со всеми сериновыми протеазами (большинство факторов свертывания крови представляют собой сериновые протеазы). В системе свертывания крови антитромбин III ингибирует активность тромбина, факторов IXa, Xa, XIa и ХIIа. Известно, что небольшое количество гепарина находится на стенках сосудов, вследствие этого снижается активация «внутреннего» пути свертывания крови. У лиц с наследственной недостаточностью антитромбина III наблюдается склонность к образованию тромбов.



Гепарин часто используется в качестве препарата, предотвращающего свертывание крови. Действие гепарина в случае его передозировки можно устранить связыванием его рядом веществ – антагонистов гепарина. К ним относится прежде всего протамин (протамина сульфат). Протамин – сильно катионный полипептид, конкурирует с катионными участками антитромбина III за связывание с полианионным гепарином.

Не менее важно применение так называемых искусственных антикоагулянтов. Например, витамин К стимулирует синтез в печени протромбина, проакцелерина, проконвертина, фактора X; для снижения активности свертывающей системы крови назначают антикоагулянты типа антивитаминов К. Это прежде всего дикумарин, неодикумарин, пелентан, синкумар и др. Антивитамины К тормозят в клетках печени синтез перечисленных ранее факторов свертывания крови. Этот способ воздействия дает эффект не сразу; а спустя несколько часов или даже дней.

Сущность и значение свертывания крови .

Если выпущенную из кровеносного сосуда кровь оставить на некоторое время, то из жидкости она вначале превращается в желе, а затем в крови организуется более или менее плотный сгусток, который, сокращаясь, выжимает из себя жидкость, называемую кровяной сывороткой. Это - плазма, лишенная фибрина. Описанный процесс называется свертыванием крови (гемокоагуляцией ). Его сущность заключается в том, что растворенный в плазме белок фибриноген в определенных условиях переходит в нерастворимое состояние и выпадает в осадок в виде длинных нитей фибрина. В ячейках этих нитей, как в сетке, застревают клетки и коллоидное состояние крови в целом меняется. Значение этого процесса заключается в том, что свернувшаяся кровь не вытекает из раненного сосуда, предотвращая смерть организма от кровопотери.

Свертывающая система крови . Ферментативная теория свертывания .

Первая теория, объясняющая процесс свертывания крови работой специальных ферментов, была разработана в 1902 г. русским ученым Шмидтом. Он считал, что свертывание протекает в две фазы. В первую один из белков плазмы протромбин под влиянием освобождающихся из разрушенных при травме клеток крови, особенно тромбоцитов, ферментов (тромбокиназы ) и ионов Са переходит в фермент тромбин . На второй стадии под влиянием фермента тромбина растворенный в крови фибриноген превращается в нерастворимый фибрин , который и заставляет кровь свертываться. В последние годы жизни Шмидт стал выделять в процессе гемокоагуляции уже 3 фазы: 1- образование тромбокиназы, 2- образование тромбина. 3- образование фибрина.

Дальнейшее изучение механизмов свертывания показало, что это представление весьма схематично и не полностью отражает весь процесс. Основное заключается в том, что в организме отсутствует активная тромбокиназа, т.е. фермент, способный превратить протромбин в тромбин (по новой номенклатуре ферментов этот следует называть протромбиназой ). Оказалось, что процесс образования протромбиназы очень сложен, в нем участвует целый ряд т.н. тромбогенных белков-ферментов, или тромбогенных факторов, которые, взаимодействуя в каскадном процессе, все необходимы для того, чтобы свертывание крови осуществилось нормально. Кроме того, было обнаружено, что процесс свертывания не кончается образованием фибрина, ибо одновременно начинается его разрушение. Таким образом, современная схема свертывания крови значительно сложнее Шмидтовой.

Современная схема свертывания крови включает в себя 5 фаз, последовательно сменяющих друг друга. Фазы эти следующие:

1. Образование протромбиназы.

2. Образование тромбина.

3. Образование фибрина.

4. Полимеризация фибрина и организация сгустка.

5. Фибринолиз.

За последние 50 лет было открыто множество веществ, принимающих участие в свертывании крови, белков, отсутствие которых в организме приводит к гемофилии (не свертываемости крови). Рассмотрев все эти вещества, международная конференция гемокоагулологов постановила обозначить все плазменные факторы свертывания римскими цифрами, клеточные - арабскими. Это было сделано для того, чтобы исключить путаницу в названиях. И теперь в любой стране после общепринятого в ней названия фактора (они могут быть разными) обязательно указывается номер этого фактора по международной номенклатуре. Для того, чтобы мы могли дальше рассматривать схему свертывания, давайте сначала дадим краткую характеристику этих факторов.

А. Плазменные факторы свертывания .

I. Фибрин и фибриноген . Фибрин - конечный продукт реакции свертывания крови. Свертывание фибриногена, являющееся его биологической особенностью, происходит не только под влиянием специфического фермента - тромбина, но может быть вызвано ядами некоторых змей, папаином и другими химическими веществами. В плазме содержится 2-4 г/л. Место образования - ретикулоэндотелиальная система, печень, костный мозг.

I I. Тромбин и протромбин . В циркулирующей крови в норме обнаруживаются лишь следы тромбина. Молекулярный вес его составляет половину молекулярного веса протромбина и равен 30 тыс. Неактивный предшественник тромбина - протромбин - всегда присутствует в циркулирующей крови. Это гликопротеид, в составе которого насчитывают 18 аминокислот. Некоторые исследователи полагают, что протромбин - это комплексное соединение тромбина и гепарина. В цельной крови содержится 15-20 мг% протромбина. Этого содержания в избытке хватает для того, чтобы перевести весь фибриноген крови в фибрин.

Уровень протромбина в крови представляет собой относительно постоянную величину. Из моментов, вызывающих колебания этого уровня, следует указать на менструации (повышают), ацидоз (снижает). Прием 40% алкоголя увеличивает содержание протромбина на 65-175% cпустя 0,5-1 час, что объясняет наклонность к тромбозам у лиц, систематически употребляющих алкоголь.

В организме протромбин постоянно используется и одновременно синтезируется. Важную роль в его образовании в печени играет антигеморрагический витамин К. Он стимулирует деятельность печеночных клеток, синтезирующих протромбин.

III. Тромбопластин . В крови этого фактора в активном виде нет. Он образуется при повреждении клеток крови и тканей и может быть соответственно кровяной, тканевой, эритроцитарный, тромбоцитарный. По своей структуре это фосфолипид, аналогичный фосфолипидам клеточных мембран. По тромбопластической активности ткани различных органов по убывающей располагаются в таком порядке: легкие, мышцы, сердце, почки, селезенка, мозг, печень. Источниками тромбопластина являются также женское молоко и околоплодная жидкость. Тромбопластин участвует как обязательный компонент в первой фазе свертывания крови.

IV. Кальций ионизированный, Са++. Роль кальция в процессе свертывания крови была известна еще Шмидту. Именно тогда в качестве консерванта крови им был предложен цитрат натрия - раствор, который связывал ионы Са++ в крови и предотвращал ее свертывание. Кальций необходим не только для превращения протромбина в тромбин, но для других промежуточных этапов гемостаза, во всех фазах свертывания. Содержание ионов кальция в крови 9-12 мг%.

V и VI. Проакцелерин и акцелерин (АС-глобулин ). Образуется в печени. Участвует в первой и второй фазах свертывания, при этом количество проакцелерина падает, а акцелерина - увеличивается. По существу V является предшественником VI фактора. Активизируется тромбином и Са++. Является ускорителем (акцелератором) многих ферментативных реакций свертывания.

VII. Проконвертин и конвертин . Этот фактор является белком, входящим в бета глобулиновую фракцию нормальной плазмы или сыворотки. Активирует тканевую протромбиназу. Для синтеза проконвертина в печени необходим витамин К. Сам фермент становится активным при контакте в поврежденными тканями.

VIII. Антигемофилический глобулин А (АГГ-А ). Участвует в образовании кровяной протромбиназы. Способен обеспечивать свертывание крови, не имевшей контакта с тканями. Отсутствие этого белка в крови является причиной развития генетически обусловленной гемофилии. Получен сейчас в сухом виде и применяется в клинике для ее лечения.

IX. Антигемофилический глобулин В (АГГ-В, Кристмас-фактор , плазменный компонент тромбопластина). Участвует в процессе свертывания как катализатор, а также входит в состав тромбопластического комплекса крови. Способствует активации Х фактора.

X. Фактор Коллера, Стьюард-Прауэр-фактор . Биологическая роль сводится к участию в процессах образования протромбиназы, так как он является ее основным компонентом. При свертывании утилизируется. Назван (как и все другие факторы) по именам больных, у которых была впервые обнаружена форма гемофилии, связанная с отсутствием указанного фактора в их крови.

XI. Фактор Розенталя, плазменный предшественник тромбопластина (ППТ ). Участвует в качестве ускорителя в процессе образования активной протромбиназы. Относится к бета глобулинам крови. Вступает в реакцию на первых этапах 1 фазы. Образуется в печени с участием витамина К.

XII. Фактор контакта, Хагеман-фактор . Играет роль пускового механизма в свертывании крови. Контакт этого глобулина с чужеродной поверхностью (шероховатость стенки сосуда, поврежденные клетки т.п.) приводит к активации фактора и инициирует всю цепь процессов свертывания. Сам фактор адсорбируется на поврежденной поверхности и в кровоток не поступает, тем самым предупреждается генерализация процесса свертывания. Под влиянием адреналина (при стрессе) частично способен активизироваться прямо в кровотоке.

XIII. Фибринстабилизатор Лаки-Лоранда . Необходим для образования окончательно нерастворимого фибрина. Это - транспептидаза, которая сшивает отдельные нити фибрина пептидными связями, способствуя его полимеризации. Активируется тромбином и Са++. Кроме плазмы есть в форменных элементах и тканях.

Описанные 13 факторов являются общепризнанными основными компонентами, необходимыми для нормального процесса свертывания крови. Вызываемые их отсутствием различные формы кровоточивости относятся к разным видам гемофилий.

В. Клеточные факторы свертывания .

Наряду с плазменными факторами первостепенную роль в свертывании крови играют и клеточные, выделяющиеся из клеток крови. Больше всего их содержится в тромбоцитах, но есть они и в других клетках. Просто при гемокоагуляции тромбоциты разрушаются в большем количестве, чем, скажем, эритроциты или лейкоциты, поэтому наибольшее значение в свертывании имеют именно тромбоцитарные факторы. К ним относятся:

1ф. АС-глобулин тромбоцитов . Подобен V-VI факторам крови, выполняет те же функции, ускоряя образование протромбиназы.

2ф. Тромбин-акцелератор . Ускоряет действие тромбина.

3ф. Тромбопластический или фосполипидный фактор . Находится в гранулах в неактивном состоянии, и может использоваться только после разрушения тромбоцитов. Активируется при контакте с кровью, необходим для образования протромбиназы.

4ф.Антигепариновый фактор . Связывает гепарин и задерживает его антикоагулирующий эффект.

5ф. Тромбоцитарный фибриноген . Необходим для агрегации кровяных пластинок, вязкого их метаморфоза и консолидации тромбоцитарной пробки. Находится и внутри и снаружи тромбоцита. способствует их склеиванию.

6ф. Ретрактозим . Обеспечивает уплотнение тромба. В его составе определяют несколько субстанций, например тромбостенин +АТФ +глюкоза.

7ф. Антифибинозилин . Тормозит фибринолиз.

8ф. Серотонин . Вазоконстриктор. Экзогенный фактор, 90% синтезируется в слизистой ЖКТ, остальные 10% - в тромбоцитах и ЦНС. Выделяется из клеток при их разрушении, способствует спазму мелких сосудов, те самым способствуя предотвращению кровотечения.

Всего в тромбоцитах находят до 14 факторов, таких еще, как антитромбопластин, фибриназа, активатор плазминогена, стабилизатор АС-глобулина, фактор агрегации тромбоцитов и др.

В других клетках крови в основном находятся эти же факторы, но заметной роли в гемокоагуляции в норме они не играют.

С. Тканевые факторы свертывания

Участвуют во всех фазах. Сюда относятся активные тромбопластические факторы, подобные III, VII,IX,XII,XIII факторам плазмы. В тканях есть активаторы V и VI факторов. Много гепарина, особенно в легких, предстательной железе, почках. Есть и антигепариновые вещества. При воспалительных и раковых заболеваниях активность их повышается. В тканях много активаторов (кинины) и ингибиторов фибринолиза. Особенно важны вещества, содержащиеся в сосудистой стенке. Все эти соединения постоянно поступают из стенок сосудов в кровь и осуществляют регуляцию свертывания. Ткани обеспечивают также и выведение продуктов свертывания из сосудов.

Современная схема гемостаза .

Попытаемся теперь объединить в одну общую систему все факторы свертывания и разберем современную схему гемостаза.

Цепная реакция свертывания крови начинается с момента соприкосновения крови с шероховатой поверхностью раненного сосуда или тканью. Это вызывает активацию тромбопластических факторов плазмы и затем происходит поэтапное образование двух отчетливо различающихся по своим свойствам протромбиназ - кровяной и тканевой..

Однако прежде, чем закончится цепная реакция образования протромбиназы, в месте повреждения сосуда происходят процессы, связанные с участием тромбоцитов (т.н. сосудисто-тромбоцитарный гемостаз ). Тромбоциты за счет своей способности к адгезии налипают на поврежденный участок сосуда, налипают друг на друга, склеиваясь тромбоцитарным фибриногеном. Все это приводит к образованию т.н. пластинчатого тромба ("тромбоцитарный гемостатический гвоздь Гайема"). Адгезия тромбоцитов происходит за счет АДФ, выделяющейся из эндотелия и эритроцитов. Этот процесс активируется коллагеном стенки, серотонином, XIII фактором и продуктами контактной активации. Сначала (в течение 1-2 минут) кровь еще проходит через эту рыхлую пробку, но затем происходит т.н. вискозное перерождение тромба, он уплотняется и кровотечение останавливается. Понятно что такой конец событий возможен только при ранении мелких сосудов, там, где артериальное давление не в состоянии выдавить этот "гвоздь".

1 фаза свертывания . В ходе первой фазы свертывания, фазе образования протромбиназы , различают два процесса, которые протекают с разной скоростью и имеют различное значение. Это - процесс образования кровяной протромбиназы, и процесс образования тканевой протромбиназы. Длительность 1 фазы составляет 3-4 минуты. однако, на образование тканевой протромбиназы тратится всего 3-6 секунд. Количество образующейся тканевой протромбиназы очень мало, ее недостаточно для перевода протромбина в тромбин, однако тканевая протромбиназа выполняет роль активатора целого ряда факторов, необходимых для быстрого образования кровяной протромбиназы. В частности, тканевая протромбиназа приводит к образованию малого количества тромбина, который переводит в активное состояние V и VIII факторы внутреннего звена коагуляции. Каскад реакций, заканчивающихся образованием тканевой протромбиназы (внешний механизм гемокоагуляции ), выглядит следующим образом:

1. Контакт разрушенных тканей с кровью и активация III фактора - тромбопластина.

2. III фактор переводит VII в VIIa (проконвертин в конвертин).

3.Образуется комплекс (Ca++ + III + VIIIa )

4. Этот комплекс активирует небольшое количество Х фактора - Х переходит в Ха .

5. (Хa + III + Va + Ca ) образуют комплекс, который и обладает всеми свойствами тканевой протромбиназы. Наличие Va (VI) связано с тем, что в крови всегда есть следы тромбина, который активирует V фактор .

6. Образовавшееся небольшое количество тканевой протромбиназы переводит небольшое количество протромбина в тромбин.

7. Тромбин активирует достаточное количество V и VIII факторов, необходимых для образования кровяной протромбиназы.

В случае выключения этого каскада (например, если со всею предосторожностью с использованием парафинированных игл, взять кровь из вены, предотвратив ее контакт с тканями и с шероховатой поверхностью, и поместить ее в парафинированную пробирку), кровь свертывается очень медленно, в течение 20-25 минут и дольше.

Ну, а в норме одновременно с уже описанным процессом запускается и другой каскад реакций, связанных с действием плазменных факторов, и заканчивающийся образованием кровяной протромбиназы в количестве, достаточном для перевода большого количества протромбина с тромбин. Реакции эти следующие ( внутренний механизм гемокоагуляции):

1. Контакт с шероховатой или чужеродной поверхностью приводит к активации XII фактора: XII -- XIIa. Одновременно начинает образовываться гемостатический гвоздь Гайема (сосудисто-тромбоцитарный гемостаз ).

2.Активный ХII фактор превращает XI в активное состояние и образуется новый комплекс XIIa + Ca ++ + XIa + III(ф3)

3. Под влиянием указанного комплекса IX фактор активизируется и образуется комплекс IXa + Va + Cа++ +III(ф3 ).

4. Под влиянием этого комплекса происходит активация значительного количества Х фактора, после чего в большом количестве образуется последний комплекс факторов: Xa + Va + Ca++ + III(ф3 ), который и носит название кровяная протромбиназа.

На весь этот процесс затрачивается в норме около 4-5 минут, после чего свертывание переходит в следующую фазу.

2 фаза свертывания - фаза образования тромбина заключается в том, что под влиянием фермента протромбиназы II фактор (протромбин) переходит в активное состояние (IIa). Это протеолитический процесс, молекула протромбина расщепляется на две половинки. Образовавшийся тромбин идет на реализацию следующей фазы, а также используется в крови для активации все большего количества акцелерина (V и VI факторов). Это пример системы с положительной обратной связью. Фаза образования тромбина продолжается несколько секунд.

3 фаза свертывания - фаза образования фибрина - тоже ферментативный процесс, в результате которого от фибриногена благодаря воздействию протеолитического фермента тромбина отщепляется кусок в несколько аминокислот, а остаток носит название фибрин-мономер, который по своим свойствам резко отличается от фибриногена. В частности, он способен к полимеризации. Это соединение обозначается как Im .

4 фаза свертывания - полимеризация фибрина и организация сгустка . Она тоже имеет несколько стадий. Вначале за несколько секунд под влиянием рН крови, температуры, ионного состава плазмы происходит образование длинных нитей фибрин-полимера Is который, однако, еще не очень стабилен, так как способен растворяться в растворах мочевины. Поэтому на следующей стадии под действием фибрин-стабилизатора Лаки-Лоранда (XIII фактора) происходит окончательная стабилизация фибрина и превращение его в фибрин Ij. Он выпадает из раствора в виде длинных нитей, которые образуют сетку в крови, в ячейках которой застревают клетки. Кровь из жидкого состояния переходит в желеобразное (свертывается). Следующей стадией этой фазы является длящаяся достаточно долго (несколько минут) ретракия (уплотнение) сгустка, которая происходит за счет сокращения нитей фибрина под действием ретрактозима (тромбостенина). В результате сгусток становится плотным, из него выжимается сыворотка, а сам сгусток превращается в плотную пробку, перекрывающую сосуд - тромб.

5 фаза свертывания - фибринолиз . Хотя она фактически не связана с образованием тромба, ее считают последней фазой гемокоагуляции, так как в ходе этой фазы происходит ограничение тромба только той зоной, где он действительно необходим. Если тромб полностью закрыл просвет сосуда, то в ходе этой фазы этот просвет восстанавливается (происходит реканализация тромба ). Практически фибринолиз всегда идет параллельно с образованием фибрина, предотвращая генерализацию свертывания и ограничивая процесс. Растворение фибрина обеспечивается протеолитическим ферментом плазмином (фибринолизином ) который содержится в плазме в неактивном состоянии в виде плазминогена (профибринолизина ). Переход плазминогена в активное состояние осуществляется специальным активатором , который в свою очередь образуется из неактивных предшественников (проактиваторов ), высвобождающихся из тканей, стенок сосудов, клеток крови, особенно тромбоцитов. В процессах перевода проактиваторов и активаторов плазминогена в активное состояние большую роль играют кислые и щелочные фосфатазы крови, трипсин клеток, тканевые лизокиназы, кинины, реакция среды, XII фактор. Плазмин расщепляет фибрин на отдельные полипептиды, которые затем утилизируются организмом.

В норме кровь человека начинает свертываться уже через 3-4 минуты после вытекания из организма. Через 5-6 минут она полностью превращается в желеобразный сгусток. Способы определения времени кровотечения, скорости свертывания крови и протромбинового времени вы узнаете на практических занятиях. Все они имеют важное клиническое значение.

Ингибиторы свертывания (антикоагулянты ). Постоянство крови как жидкой среды в физиологических условиях поддерживается совокупностью ингибиторов, или физиологических антикоагулянтов, блокирующих или нейтрализующих действие коагулянтов (факторов свертывания). Антикоагулянты являются нормальными компонентами системы функциональной системы гемокоагуляции.

В настоящее время доказано, что существует ряд ингибиторов по отношению к каждому фактору свертывания крови, и, однако, наиболее изученным и имеющим практическое значение является гепарин. Гепарин - это мощный тормоз превращения протромбина в тромбин. Кроме того, он влияет на образование тромбопластина и фибрина.

Гепарина много в печени, мышцах и легких, чем и объясняется не свертываемость крови в малом круге кровотечения и связанная с этим опасность легочных кровотечений. Кроме гепарина обнаружено еще несколько естественных антикоагулянтов с антитромбиновым действием, их принято обозначать порядковыми римскими цифрами:

I. Фибрин (поскольку он в процессе свертывания поглощает тромбин).

II. Гепарин.

III. Естественные антитромбины (фосфолипопротеиды).

IV. Антипротромбин (препятствующий превращению протромбина в тромбин).

V. Антитромбин крови больных ревматизмом.

VI. Антитромбин, возникающий при фибринолизе.

Кроме этих физиологических антикоагулянтов многие химические вещества различного происхождения обладают антикоагулянтной активностью - дикумарин, гирудин (из слюны пиявок) и др. Эти препараты применятся в клинике при лечении тромбозов.

Препятствует свертыванию крови и фибринолитическая система крови . По современным представлениям она состоит из профибринолизина (плазминогена ), проактиватора и системы плазменных и тканевых активаторов плазминогена . Под влиянием активаторов плазминоген переходит в плазмин, который растворяет сгусток фибрина.

В естественных условиях фибринолитическая активность крови находится в зависимости от депо плазминогена, плазменного активатора, от условий, обеспечивающих процессы активации, и от поступления этих веществ в кровь. Спонтанная активность плазминогена в здоровом организме наблюдается при состоянии возбуждения, после инъекции адреналина, при физических напряжениях и при состояниях, связанных с шоком. Среди искусственных блокаторов фибринолитической активности крови особое место занимает гамма аминокапроновая кислота (ГАМК). В норме в плазме содержится количество ингибиторов плазмина, превышающее в 10 раз уровень запасов плазминогена в крови.

Состояние процессов гемокоагуляции и относительное постоянство или динамическое равновесие факторов свертывания и антисвертывания связано с функциональным состоянием органов системы гемокоагуляции (костного мозга, печени, селезенки, легких, сосудистой стенки). Деятельность последних, а следовательно, и состояние процесса гемокоагуляции, регулируется нервно-гуморальными механизмами. В кровеносных сосудах имеются специальные рецепторы, воспринимающих концентрацию тромбина и плазмина. Эти два вещества и программируют деятельность указанных систем.

Регуляция процессов гемокоагуляции и антигоагуляции .

Рефлекторные влияния . Важное место среди многих раздражителей, падающих на организм, занимает болевое раздражение. Боль приводит к изменению деятельности почти всех органов и систем, в том числе и системы свертывания. Кратковременное или длительное болевое раздражение ведет к ускорению свертывания крови, сопровождаемое тромбоцитозом. Присоединение к боли чувства страха приводит к еще более резкому ускорению свертывания. Болевое раздражение, нанесенное анестезированному участку кожи, не вызывает ускорения свертывания. Такой эффект наблюдается с первого дня рождения.

Большое значение имеет продолжительность болевого раздражения. При кратковременной боли сдвиги менее выражены и возврат к норме совершается в 2-3 раза быстрей, чем при длительном раздражении. Это дает основание полагать, что в первом случае принимает участие лишь рефлекторный механизм, а при длительном болевом раздражении включается и гуморальное звено, обусловливая продолжительность наступающих изменений. Большинство ученых полагает, что таким гуморальным звеном при болевом раздражении является адреналин.

Значительное ускорение свертывания крови происходит рефлекторно также при действии на организм тепла и холода. После прекращения теплового раздражения период восстановления до исходного уровня в 6-8 раз короче, чем после холодового.

Свертывание крови является компонентом ориентировочной реакции. Изменение внешней среды, неожиданное появление нового раздражителя вызывают ориентировочную реакцию и одновременно ускорение свертывания крови, что является биологически целесообразной защитной реакцией.

Влияние вегетативной нервной системы . При раздражении симпатических нервов или после инъекции адреналина свертывание ускоряется. Раздражение парасимпатического отдела НС приводит к замедлению свертывания. Показано, что вегетативная нервная система оказывает влияние на биосинтез прокоагулянтов и антикоагулянтов в печени. Имеются все основания полагать, что влияние симпатико-адреналовой системы распространяется преимущественно на факторы свертывания крови, а парасимпатической - преимущественно на факторы, препятствующие свертыванию крови. В период остановки кровотечения оба отдела ВНС выступают синергично. Их взаимодействие в первую очередь направлено на остановку кровотечения, что жизненно важно. В дальнейшем, после надежной остановки кровотечения, усиливается тонус парасимпатической НС, что приводит к повышению антикоагулятной активности, столь важной для профилактики внутрисосудистых тромбозов.

Эндокринная система и свертывание . Эндокринные железы являются важным активным звеном механизма регуляции свертывания крови. Под влиянием гормонов процессы свертывания крови претерпевают ряд изменений, а гемокоагуляция либо ускоряется, либо замедляется. Если сгруппировать гормоны по их действию на свертывание крови, то к ускоряющим свертывание будут относиться АКТГ, СТГ, адреналин, кортизон, тестостерон, прогестерон, экстракты задней доли гипофиза, эпифиза и зобной железы; замедляют свертывание тиреотропный гормон, тироксин и эстрогены.

Во всех приспособительных реакциях, в особенности протекающих с мобилизацией защитных сил организма, в поддержании относительного постоянства внутренней среды вообще и системы свертывания крови, в частности, гипофизарно-анреналовая система является важнейшим звеном нейрогуморального механизма регуляции.

Имеется значительное количество данных, свидетельствующих о наличии влияния коры головного мозга на свертывание крови. Так, свертывание крови изменяется при повреждении полушарий головного мозга, при шоке, наркозе, эпилептическом припадке. Особый интерес представляют изменения скорости свертывания крови в гипнозе, когда человеку внушают, что он ранен, и в это время свертываемость возрастает так: как будто это происходит в действительности.

Противосвертывающая система крови .

Еще в 1904 году известный немецкий ученый - коагулолог Моравиц впервые высказал предположение о наличие в организме противосвертывающей системы, которая сохраняет кровь в жидком состоянии, а также о том что свертывающая и антисвертывающая системы, находятся в состоянии динамического равновесия.

Позже эти предположения подтвердились в лаборатории, возглавляемой профессором Кудряшовым. В 30-е годы был получен тромбин, который вводился крысам с целью вызвать свертывание крови в сосудах. Оказалось, что кровь в этом случае вообще перестала свертываться. Значит, тромбин активизировал какую-то систему, которая препятствует свертыванию крови в сосудах. На основании этого наблюдения, Кудряшов пришел также к выводу о наличии противосвертывающей системы.

Под противосвертывающей системой следует понимать совокупность органов и тканей, которые синтезируют и утилизируют группу факторов, обеспечивающих жидкое состояние крови, то есть препятствующих свертыванию крови в сосудах. К таким органам и тканям относятся сосудистая система, печень, некоторые клетки крови и др. Эти органы и ткани вырабатывают вещества, которые получили на звание ингибиторов свертывания крови или естественных антикоагулянтов. Они вырабатываются в организме постоянно, в отличие от искусственных, которые вводятся при лечении претромбических состояний.

Ингибиторы свертывания крови действуют по фазам. Предполагается, что механизм их действия заключается либо в разрушении, либо в связывании факторов свертывания крови.

В 1 фазе в качестве антикоагулянтов срабатывают: гепарин (универсальный ингибитор) и антипротромбиназы.

Во 2 фазе срабатывают ингибиторы тромбина: фибриноген, фибрин с продуктами своего распада - полипептиды, продукты гидролиза тромбина, претромбин 1 и II, гепарин и естественный антитромбин 3, который относится к группе глюкозоаминогликанов.

При некоторых патологических состояниях, например, заболевания сердечно - сосудистой системы, в организме появляются дополнительные ингибиторы.

Наконец, имеет место ферментативный фибринолиз, (фибринолитическая система) протекающий в 3 фазы. Так, если в организме много образуется фибрина или тромбина, то моментально включается фибринолитическая система и происходит гидролиз фибрина. Большое значение в сохранении жидкого состояния крови имеет неферментативный фибринолиз, о котором говорилось раньше.

По Кудряшову различают две противосвертывающие системы:

I-ая имеет гуморальную природу. Она срабатывает постоянно, осуществляя выброс всех уже перечисленных антикоагулянтов, исключая гепарин. II-ая - аварийная противосвертывающая система, которая обусловлена нервными механизмами, связанными с функциями определенных нервных центров. Когда в крови накапливается угрожающее количество фибрина или тромбина, происходит раздражение соответствующих рецепторов, что через нервные центры активизирует противосвертывающую систему.

Как свертывающая, так и противосвертывающая система регулируются. Давно было замечено, что под влиянием нервной системы, а также некоторых веществ, происходит либо гипер-, либо гипокоагуляция. Например, при сильном болевом синдроме, имеющем место при родах, может развиваться тромбоз в сосудах. Под влиянием стрессовых напряжений также могут образовываться в сосудах тромбы.

Свертывающая и антисвертывающая системы взаимосвязаны, находятся под контролем как нервных, так и гуморальных механизмов.

Можно предположить, что существует функциональная система, обеспечивающая свертывание крови, которая состоит из воспринимающего звена, представленного специальными хеморецепторами, заложенными в сосудистых рефлексогенных зонах (дуга аорты и синокаротидная зона), которые улавливают факторы, обеспечивающие свертывание крови. Второе звено функциональной системы - это механизмы регуляции. К ним относятся нервный центр, получающий информацию с рефлексогенных зон. Большинство ученых предполагает, что этот нервный центр, обеспечивающий регуляцию свертывающей системы, находится в области гипоталамуса. Эксперименты над животными показывают, что при раздражении задней части гипоталамуса имеет место чаще гиперкоагуляция, а при раздражении передней части - гипокоагуляция. Эти наблюдения доказывают влияние гипоталамуса на процесс свертывания крови, и наличие в нем соответствующих центров. Через этот нервный центр осуществляется контроль за синтезом факторов, обеспечивающих свертывание крови.

К гуморальным механизмам относятся вещества, меняющие скорость свертывания крови. Это прежде всего гормоны: АКТГ, СТГ, глюкокортикоиды, ускоряющие свертывание крови; инсулин действует двуфазно - в течение первых 30 минут ускоряет свертывание крови, а затем в течение нескольких часов - замедляет.

Минералокортикоиды (альдостерон) снижают скорость свертывания крови. Половые гормоны действуют по-разному: мужские ускоряют свертывание крови, женские действуют двояко: одни из них увеличивают скорость свертывание крови - гормоны желтого тела. другие же, замедляют (эстрогены)

Третье звено - органы - исполнители, к которым, прежде всего, относится печень, вырабатывающая факторы свертывания, а также клетки ретикулярной системы.

Как работает функциональная система? Если концентрация каких - либо факторов обеспечивающих процесс свертывания крови, возрастает или падает, то это воспринимается хеморецепторами. Информация от них идет в центр регуляции свертывания крови, а затем на органы - исполнители, и по принципу обратной связи их выработка или тормозится или увеличивается.

Регулируется также и антисвертывающая система, обеспечивающая крови жидкое состояние. Воспринимающее звено этой функциональной системы находится в сосудистых рефлексогенных зонах и представлено специфическими хеморецепторами, улавливающими концентрацию антикоагулянтов. Второе звено представлено нервным центром противосвертывающей системы. По данным Кудряшова, он находится в продолговатом мозге, что доказывается рядом экспериментов. Если, например, выключить его такими вещества ми, как аминозин, метилтиурацил и другими, то кровь начинает свертываться в сосудах. К исполнительным звеньям относятся органы, синтезирующие антикоагулянты. Это сосудистая стенка, печень, клетки крови. Срабатывает функциональная система, препятствующая свертыванию крови следующим образом: много антикоагулянтов - их синтез тормозится, мало - возрастает (принцип обратной связи).