Егэ оптика часть с. Решение задач ЕГЭ части С: Геометрическая оптика с решениями

Свет – это электромагнитные волны, длины волн которых лежат для среднего глаза человека в пределах от 400 до 760 нм. В этих пределах свет называется видимым . Свет с наибольшей длиной волны кажется нам красным, а с наименьшей – фиолетовым. Запомнить чередование цветов спектра легко с помощью поговорки «К аждый О хотник Ж елает З нать, Г де С идит Ф азан». Первые буквы слов поговорки соответствуют первым буквам основных цветов спектра в порядке убывания длины волны (и соответственно возрастания частоты): «К расный – О ранжевый – Ж елтый – З еленый – Г олубой – С иний – Ф иолетовый». Свет с большими, чем у красного, длинами волн, называется инфракрасным . Его наш глаз не замечает, но наша кожа фиксирует такие волны в виде теплового излучения. Свет с меньшими, чем у фиолетового, длинами волн, называется ультрафиолетовым .

Электромагнитные волны (и, в частности, световые волны , или просто свет ) – это распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы электрической напряженности и магнитной индукции перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны. Световые волны, как и любые другие электромагнитные волны, распространяются в веществе с конечной скоростью, которая может быть рассчитана по формуле:

где: ε и μ – диэлектрическая и магнитная проницаемости вещества, ε 0 и μ 0 – электрическая и магнитная постоянные: ε 0 = 8,85419·10 –12 Ф/м, μ 0 = 1,25664·10 –6 Гн/м. Скорость света в вакууме (где ε = μ = 1) постоянна и равна с = 3∙10 8 м/с, она также может быть вычислена по формуле:

Скорость света в вакууме является одной из фундаментальных физических постоянных. Если свет распространяется в какой-либо среде, то скорость его распространения также выражается следующим соотношением:

где: n – показатель преломления вещества – физическая величина, показывающая во сколько раз скорость света в среде меньше чем в вакууме. Показатель преломления, как видно из предыдущих формул, может быть рассчитан следующим образом:

  • Свет переносит энергию. При распространении световых волн возникает поток электромагнитной энергии.
  • Световые волны испускаются в виде отдельных квантов электромагнитного излучения (фотонов) атомами или молекулами.

Кроме света существуют и другие виды электромагнитных волн. Далее они перечислены по уменьшению длины волны (и соответственно, по возрастанию частоты):

  • Радиоволны;
  • Инфракрасное излучение;
  • Видимый свет;
  • Ультрафиолетовое излучение;
  • Рентгеновское излучение;
  • Гамма-излучение.

Интерференция

Интерференция – одно из ярких проявлений волновой природы света. Оно связано с перераспределением световой энергии в пространстве при наложении так называемых когерентных волн, то есть волн, имеющих одинаковые частоты и постоянную разность фаз. Интенсивность света в области перекрытия пучков имеет характер чередующихся светлых и темных полос, причем в максимумах интенсивность больше, а в минимумах меньше суммы интенсивностей пучков. При использовании белого света интерференционные полосы оказываются окрашенными в различные цвета спектра.

Для расчета интерференции используется понятие оптической длины пути . Пусть свет прошел расстояние L в среде с показанием преломления n . Тогда его оптическая длина пути рассчитывается по формуле:

Для интерференции необходимо наложение хотя бы двух лучей. Для них вычисляется оптическая разность хода (разность оптических длин) по следующей формуле:

Именно эта величина и определяет, что получится при интерференции: минимум или максимум. Запомните следующее: интерференционный максимум (светлая полоса) наблюдается в тех точках пространства, в которых выполняется следующее условие:

При m = 0 наблюдается максимум нулевого порядка, при m = ±1 максимум первого порядка и так далее. Интерференционный минимум (темная полоса) наблюдается при выполнении следующего условия:

Разность фаз колебаний при этом составляет:

При первом нечетном числе (единица) будет минимум первого порядка, при втором (тройка) минимум второго порядка и т.д. Минимума нулевого порядка не бывает.

Дифракция. Дифракционная решетка

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий, размеры которых сопоставимы с длиной волны света (огибание светом препятствий). Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени (то есть быть там, где его быть не должно). Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.

Дифракционные решетки представляют собой периодические структуры, выгравированные специальной делительной машиной на поверхности стеклянной или металлической пластинки. У хороших решеток параллельные друг другу штрихи имеют длину порядка 10 см, а на каждый миллиметр приходится до 2000 штрихов. При этом общая длина решетки достигает 10–15 см. Изготовление таких решеток требует применения самых высоких технологий. На практике применяются также и более грубые решетки с 50–100 штрихами на миллиметр, нанесенными на поверхность прозрачной пленки.

При нормальном падении света на дифракционную решетку в некоторых направлениях (помимо того, в котором изначально падал свет) наблюдаются максимумы. Для того, чтобы наблюдался интерференционный максимум , должно выполняться следующее условие:

где: d – период (или постоянная) решетки (расстояние между соседними штрихами), m – целое число, которое называется порядком дифракционного максимума. В тех точках экрана, для которых это условие выполнено, располагаются так называемые главные максимумы дифракционной картины.

Законы геометрической оптики

Геометрическая оптика – это раздел физики, в котором не учитываются волновые свойства света. Основные законы геометрической оптики были известны задолго до установления физической природы света.

Оптически однородная среда - это среда, во всем объеме которой показатель преломления остаётся неизменным.

Закон прямолинейного распространения света: в оптически однородной среде свет распространяется прямолинейно. Этот закон приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны (в этом случае наблюдается дифракция).

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а частично пройти через границу и распространяться во второй среде.

Закон отражения света: падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения γ равен углу падения α . Заметьте, что все углы в оптике измеряются от перпендикуляра к границе раздела двух сред.

Закон преломления света (закон Снеллиуса): падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред, и определяется выражением:

Закон преломления был экспериментально установлен голландским ученым В.Снеллиусом в 1621 году. Постоянную величину n 21 называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления .

Среду с большим значением абсолютного показателя называют оптически более плотной, а с меньшим – менее плотной. При переходе из менее плотной среды в более плотную луч «прижимается» к перпендикуляру, а при переходе из более плотной в менее плотную – «удаляется» от перпендикуляра. Единственный случай, когда луч не преломляется, это если угол падения равен 0 (то есть лучи перпендикулярны границе раздела сред).

При переходе света из оптически более плотной среды в оптически менее плотную n 2 < n 1 (например, из стекла в воздух) можно наблюдать явление полного внутреннего отражения , то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол α пр, который называется предельным углом полного внутреннего отражения . Для угла падения α = α пр, sinβ = 1, так как β = 90°, это значит, что преломленный луч идет вдоль самой границы раздела, при этом, согласно закону Снеллиуса, выполняется следующее условие:

Как только угол падения становиться больше предельного, то преломленный луч уже не просто идет вдоль границы, а он и вовсе не появляется, так как его синус теперь уж должен быть больше единицы, а такого не может быть.

Линзы

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой .

Линзы бывают собирающими и рассеивающими . Если показатель преломления линзы больше, чем окружающей среды, то собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше. Если показатель преломления линзы меньше, чем окружающей среды, то всё наоборот.

Прямая, проходящая через центры кривизны сферических поверхностей, называется главной оптической осью линзы . В случае тонких линз можно приближенно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления. Все прямые, проходящие через оптический центр, называются побочными оптическими осями .

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F , которая называется главным фокусом линзы . У тонкой линзы имеются два главных фокуса, симметрично расположенных относительно линзы на главной оптической оси. У собирающих линз фокусы действительные, у рассеивающих – мнимые. Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием . Оно обозначается той же буквой F .

Формула линзы

Основное свойство линз – способность давать изображения предметов. Изображение – это точка пространства, где пересекаются лучи (или их продолжения), испущенные источником после преломления в линзе. Изображения бывают прямыми и перевернутыми , действительными (пересекаются сами лучи) и мнимыми (пересекаются продолжения лучей), увеличенными и уменьшенными .

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей.

Для простоты можно запомнить, что изображение точки будет точкой. Изображение точки, лежащей на главной оптической оси, лежит на главной оптической оси. Изображение отрезка – отрезок. Если отрезок перпендикулярен главной оптической оси, то его изображение перпендикулярно главной оптической оси. А вот если отрезок наклонен к главной оптической оси под некоторым углом, то его изображение будет наклонено уже под некоторым другим углом.

Изображения можно также рассчитать с помощью формулы тонкой линзы . Если кратчайшее расстояние от предмета до линзы обозначить через d , а кратчайшее расстояние от линзы до изображения через f , то формулу тонкой линзы можно записать в виде:

Величину D , обратную фокусному расстоянию. называют оптической силой линзы . Единица измерения оптической силы является 1 диоптрия (дптр). Диоптрия – оптическая сила линзы с фокусным расстоянием 1 м.

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0. Оптическая сила рассеивающей линзы также отрицательна.

Величины d и f также подчиняются определенному правилу знаков: f > 0 – для действительных изображений; f < 0 – для мнимых изображений. Перед d знак «–» ставится только в том случае, когда на линзу падает сходящийся пучок лучей. Тогда их мысленно продлевают до пересечения за линзой, помещают туда воображаемый источник света, и определяют для него расстояние d .

В зависимости от положения предмета по отношению к линзе изменяются линейные размеры изображения. Линейным увеличением линзы Γ называют отношение линейных размеров изображения и предмета. Для линейного увеличения линзы существует формула:

На этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Свеча находится на расстоянии =3, 75 м от экрана. Между свечой и экраном помещают собирающую линзу, которая дает на экране четкое изображение свечи при двух положениях линзы. Найти фокусное расстояние линзы F, если расстояние между положениями линзы b =0, 75 м.

    Объективы современных фотоаппаратов имеют переменное фокусное расстояние. При изменении фокусного расстояния «наводка на резкость» не сбивается. Условимся считать изображение на плёнке фотоаппарата резким, если вместо идеального изображения в виде точки на плёнке получается изображение пятна диаметром не более 0, 05 мм. Поэтому если объектив находится на фокусном расстоянии от плёнки, то резкими считаются не только бесконечно удалённые предметы, но и все предметы, находящиеся дальше некоторого расстояния d. Оказалось, что это расстояние равно 5 м, если фокусное расстояние объектива 50 мм. Как изменится это расстояние, если, не меняя «относительного отверстия» изменить фокусное расстояние объектива до 25 мм? («Относительное отверстие» – это отношение фокусного расстояния к диаметру входного отверстия объектива.) При расчётах считать объектив тонкой линзой. Сделайте рисунок, поясняющий образование пятна F D d b f

    Решение. 1. Выразим расстояние d из формулы тонкой линзы: (1) 2. Из подобия треугольников следует: (2) где D – диаметр линзы, b – диаметр пятна на экране. 3. Решаем совместно (1) и (2) и получаем значение d: (3), 4. По условию задачи «относительное отверстие» с = F/D величина постоянна, значит они пропорциональны другу. С уменьшением фокусного расстояния, во столько же раз должен уменьшится диаметр линзы. Значит, при уменьшении в два раза фокусного расстояния в четыре раза уменьшается расстояние, с которого можно считать предмет бесконечно далеким.

    Решение 1. Определить, на каком расстоянии от линзы находится мнимое изображение источника S`: , От зеркала – на расстоянии 7 см. 2. Однако свет отражается от зеркала и образует действительное изображение в точке S``. Отраженный луч симметричен, откуда, зная расстояние между зеркалом и линзой, можно найти, на каком расстоянии от линзы оно находится. Х = 8 – 7 = 1 см. Значит, от источника света его действительное изображение будет на расстоянии 8, 5 см.

    Линза + плоское зеркало Плоское зеркало вплотную прижато к тонкой собирающей линзе с фокусным расстоянием F. Изображение предмета находится на расстоянии 2 F от линзы. С каким увеличением изображен предмет? Решение: Оптическая система имеет оптическую силу равную Do = D 1 + D 2 + Dз. Это обосновывается тем, что луч два раза преломляется и один раз отражается, Dз – оптическая сила плоского зеркала, которая равна 0. Значит, система имеет фокусное расстояние F/2. Отсюда можно определить расстояние от источника до линзы d = 2 F/3, и увеличение равно Г = 3.

    1. На каком расстоянии друг от друга следует расположить две линзы: сначала рассеивающую с фокусным расстоянием 4 см, затем собирающую с фокусным расстоянием 9 см, чтобы пучок параллельных главной оптической оси лучей, пройдя обе линзы, оставался параллельным? 2. На каком расстоянии друг от друга следует расположить две линзы: сначала собирающую с фокусным расстоянием 30 см, затем рассеивающую с фокусным расстоянием 20 см, чтобы пучок параллельных главной оптической оси лучей, пройдя обе линзы, оставался параллельным? Линза + линза

    Одна сторона толстой стеклянной пластины имеет ступенчатую поверхность, как показано на рисунке. На пластину, перпендикулярно ее поверхности, падает световой пучок, который после отражения от пластины собирается линзой. Длина падающей световой волны l. При каком наименьшем из указанных значений высоты ступеньки d интенсивность света в фокусе линзы будет минимальной?

    1. Небольшой груз, подвешенный на нити длиной 2, 5 м, совершает гармонические колебания с амплитудой 0, 1 м. При помощи собирающей линзы с фокусным расстоянием 0, 2 м изображение колеблющегося груза проецируется на экран, расположенный на расстоянии 0, 5 м от линзы. Главная оптическая ось линзы перпендикулярна плоскости колебания маятника и плоскости экрана. Определить максимальную скорость изображения груза на экране. Обозначим максимальную скорость маятника υмакс = Aω и изображения υ`макс =A`ω. (1). 2) Связь между амплитудами можно определить по формуле тонкой линзы с использованием линейного поперечного увеличения: 3. Частота колебания маятника равна Отсюда А` = A(f - F)/F (2), 4) Подставим (2) в формулу (1) и определим искомую величину:

    Боковая сторона прямоугольной трапеции АВСД примыкающей к ее прямым углам, расположена на главной оптической оси тонкой линзы. Линза создает действительное изображение трапеции в виде трапеции с теми же самыми углами. Если повернуть трапецию АВСД на 1800 вокруг стороны АВ, то линза создает изображение трапеции в виде прямоугольника. С каким увеличением отображается сторона АВ? В D А

    В C 2 F D A 2 F F D` A` C` C`` В` 1. Построить изображение трапеции, соответствующее условию задачи «с теми же самыми углами» . Это значит, что сторона ВС до линзы и после линзы должны лежать на одной прямой. Это будет в том случае, если эта прямая проходит через двойной фокус. Второй луч выгоднее провести через фокус, Получается трапеция A`B`C`D`. 2. По условию задачи при повороте трапеции через АВ изображение получается в виде прямоугольника. Построим его. Луч, который проходит через фокус через новую точку С дает ее новое изображение на уровне B`. Только, если АВ расположена в середине отрезка возможно такое. 3. На основе формулы тонкой линзы, с учетом d = 2/3 F, получаем f = 3 F, Соответственно, увеличение стороны АВ равно Г = f/d = 2

    Тонкая стеклянная бипризма с преломляющим углом 0, 05 рад, показателем преломления 1, 5 и шириной 20 см стоит вертикально в пучке параллельных световых лучей. Найдите расстояние от бипризмы до экрана, при котором ширина тени в центре экрана равна ширине бипризмы Положение экрана и изображения на нем

    Тренировочные задания ЕГЭ по теме «Геометрическая оптика».

    Раздел №1 «Линзы»

    1 часть (2 балла)

    1) Стеклянную собирающую линзу (показатель преломления стекла 1,54) перенесли из воздуха (показатель преломления воздуха равен 1) в воду (показатель преломления воды равен 1,33). Как изменились при этом фокусное расстояние и оптическая сила линзы? Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответах могут повторяться.

    1. увеличилась

    2. уменьшилась

    3. не изменилась

    2) Стеклянную собирающую линзу (показатель преломления стекла 1,54) перенесли из воздуха (показатель преломления воздуха равен 1) в воду (показатель преломления воды равен 1,33). Выберите два верных утверждения о характере изменений, произошедших с линзой.

    1. Линза из рассеивающей превратилась в собирающую.

    2. Фокусное расстояние линзы уменьшилось, а оптическая сила увеличилась.

    3. Линза из собирающей превратилась в рассеивающую.

    4. Фокусное расстояние линзы увеличилось, а оптическая сила уменьшилась.

    5.Линза осталась собирающей.

    3) F перпендикулярно этой оси. Расстояние от линзы до нити равно 2 F

    4) В опыте нить накала лампы расположена вблизи главной оптической оси тонкой линзы с фокусным расстоянием F перпендикулярно этой оси. Расстояние от линзы до нити равно 1,5 F . Сначала в опыте использовали рассеивающую линзу, а затем - собирающую. Установите соответствие между видом линзы и свойствами изображения.

    5) Предмет расположен на двойном фокусном расстоянии от тонкой собирающей линзы, передвигают к тройному фокусу. Как изменятся при этом расстояние от линзы до изображения предмета и размер изображения? Для каждой величины определите характер изменения:

    1. увеличилась

    2. уменьшилась

    3. не изменилась

    Раздел №2 «Прямолинейное распространение света».

    1 часть (1 балл)

    1) Тень на экране от предмета, освещенного точечным источником света, имеет размеры в 3 раза большие, чем сам предмет. Расстояние от источника света до предмета равно 1м. Определите расстояние от предмета до экрана.

    Ответ: _____ м

    2) Маленькая лампочка освещает экран через непрозрачную перегородку с круглым отверстием радиусом 0,2 м. Расстояние от лампочки до экрана в 4 раза больше расстояния от лампочки до перегородки. Каков радиус освещенного пятна на экране?

    Ответ: _____ м

    Раздел№3 «Формула тонкой линзы. Увеличение линзы».

    2 часть (1 балл)

    1) Предмет расположен перпендикулярно главной оптической оси тонкой собирающей линзы с оптической силой 10 дптр. Расстояние от предмета до линзы равно 30 см. Определите расстояние от линзы до изображения предмета.

    Ответ: _____ см

    2) Предмет расположен на расстоянии d = 5 см от тонкой собирающей линзы с фокусным расстоянием F =4см. Определите увеличение предмета, даваемое линзой.

    Ответ: _____ раз

    3) Предмет расположен на горизонтальной главной оптической оси тонкой собирающей линзы. Оптическая сила линзы равна 5 дптр. Изображение предмета действительное увеличенное. Отношение высоты изображения предмета к высоте самого предмета равно 2. Найдите расстояние от изображения до предмета до линзы.

    Ответ: _____ см

    4) F =2м дает на экране изображение предмета, увеличенное в 4 раза. Каково расстояние от предмета до линзы?

    Ответ: _____ м

    5) Линза с фокусным расстоянием F =1м дает на экране изображение предмета, уменьшенное в 4 раза. Каково расстояние от предмета до линзы?

    Ответ: _____ м

    6) Предмет высотой 6см расположен на горизонтальной главной оптической оси тонкой собирающей линзы на расстоянии 30 см от ее оптического центра. Высота действительного изображения предмета равна 12см. Найдите фокусное расстояние линзы.

    Ответ: _____ см

    Ответы.

    Задача

    Ответ

    45 или 54

    15см

    В 4 раза

    60см

    2,5м

    20см

    Слайд 2

    Цель: повторение основных понятий, законов и формул ОПТИКИ в соответствии с кодификатором ЕГЭ.

    Слайд 3

    Волновые свойства света

    В основу волновой теории положен принцип Гюйгенса: каждая точка, до которой доходит волна, становится центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. Свет – это электромагнитные волны

    Слайд 4

    Тот факт, что свет в одних опытах обнаруживает волновые свойства, а в других – корпускулярные, означает, что свет имеет сложную двойственную природу, которую принято характеризовать термином корпускулярно-волновой дуализм. Квантовые свойства света: излучение черного тела, фотоэффект, эффект Комптона Волновые свойства света: Интерференция, дифракция, поляризация света

    Слайд 5

    Интерференция света

    Интерференция (от лат. inter - взаимно и ferio- ударяю) - явление наложения волн, вследствие которого наблюдается устойчивое во времени усиление или ослабление результирующих колебаний в различных точках пространства) Интерференционная картина - неизменная во времени картина усиления или ослабления воли в пространстве Кольца Ньютона в зеленом и красном свете. Распределение интенсивности в интерференционной картине.

    Слайд 6

    Когерентные волны - волны с одинаковой частотой, поляризацией и постоянной разностью фаз Время когерентности (длительность излучения кванта света)t = 10-8 с Графики интерференции когерентных волн при разном времени запаздывания:

    Слайд 7

    Условие максимума: максимальная результирующая интенсивность при интерференции когерентных колебаний в определенной точке пространства получается при их запаздывании друг относительно друга на время, кратное периоду этих колебаний: Условие минимума: Минимальная результирующая интенсивность при интерференции когерентных колебаний в определенной точке пространства получается при их запаздывании друг относительно друга на время, равное нечетному числу полупериодов этих колебаний: При одинаковом законе колебаний двух источников интерференционные максимумы наблюдаются в точках пространства, для которых геометрическая разность хода интерферирующих волн равна целому числу длин волн: При одинаковом законе колебаний двух источников интерференционные минимумы наблюдаются в тех точках пространства, для которых геометрическая разность хода интерферирующих воли равна нечетному числу полуволн

    Слайд 8

    Схема опыта Юнга R ym Когерентные источники можно получить с помощью: Зеркала Ллойда Бипризмы Френеля Тонких пленок).

    Слайд 9

    Примеры интерференции

  • Слайд 10

    Просветление оптики

    Просветление оптики - уменьшение отражения света от поверхности линзы в результате нанесения на нее специальной пленки Требуемая толщина покрытия Просветляющие плёнки уменьшают светорассеяние и отражение падающего света от поверхности оптического элемента, соответственно улучшая светопропускание системы и контраст оптического изображения.

    Слайд 11

    Дифракция света

    Дифракция - явление нарушения целостности фронта волны, вызванное резкими неоднородностями среды; Решить задачу дифракции - значит найти распределение интенсивности света на экране в зависимости от размеров и формы препятствий, вызывающих дифракцию; Условие для т-го дифракционного минимума Принцип Гюйгенса–Френеля а - размер щели, α- угол отклонения света от прямолинейного направления

    Слайд 12

    Дисперсия света

    Разложение света в спектр вследствие дисперсии при прохождении через призму (опыт Ньютона) Диспе́рсиясве́та(разложение света) - это явление зависимостиабсолютного показателя преломления вещества от длины волны (или частоты) света (частотная дисперсия), или, что то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты).

    Слайд 13

    Дифракционная решетка

    Решетки представляют собой периодические структуры, выгравированные специальной делительной машиной на поверхности стеклянной или металлической пластинки; Дифракционная решетка предпочтительнее в спектральных экспериментах, чем применение щели из-за слабой видимости дифракционной картины и значительной ширины дифракционных максимумов на одной щели Условие главных максимумов при дифракции света на решетке: главные максимумы будут наблюдаться под углом α, определяемым условием: m = 0, 1, 2, … Увеличение числа щелей приводит к увеличению яркости дифракционной картины

    Слайд 14

    Интенсивность света в главном дифракционном максимуме пропорциональнаквадрату полного числа щелей дифракционной решетки где I0 - интенсивность света, излучаемого одной щелью Разрешающая способность дифракционной решетки Период решётки Дифракция света на решетке Очень большая отражательная дифракционная решётка d = 1 / N мм

    Слайд 15

    Рассмотрим задачи:

    ЕГЭ 2001-2010 (Демо, КИМ) ГИА-9 2008-2010 (Демо)

    Слайд 16

    ГИА 2008 г. 26 Дима рассматривает красные розы через зеленое стекло. Какого цвета будут казаться ему розы? Объясните наблюдаемое явление. Дайте развернутое, логически связанное обоснование.

    Черными, т.к. зеленое стекло не пропускает лучи красного цвета

    Слайд 17

    (ГИА 2009 г.) 13.После прохождения оптического прибора, закрытого на рисунке ширмой, ход лучей 1 и 2 изменился на 1′ и 2′. За ширмой находится

    плоское зеркало плоскопараллельная стеклянная рассеивающая собирающая линза

    Слайд 18

    ГИА 2009 г. 26 Каким пятном (темным или светлым) кажется водителю ночью в свете фар его автомобиля лужа на неосвещенной дороге? Ответ поясните.

    1. Лужа кажется темным пятном на фоне более светлой дороги. 2. И лужу, и дорогу освещают только фары автомобиля. От гладкой поверхности воды свет отражается зеркально, то есть вперед, и не попадает в глаза водителю. Поэтому лужа будет казаться темным пятном. От шероховатой поверхности дороги свет рассеивается и частично попадает в глаза водителю.

    Слайд 19

    (ЕГЭ 2002 г., Демо) А21. Если осветить красным светом лазерной указки два близких отверстия S1 и S2 , проколотые тонкой иглой в фольге, то за ней на экране наблюдаются два пятна. По мере удаления экрана Э они увеличиваются в размере, пятна начинают перекрываться и возникает чередование красных и темных полос. Что будет наблюдаться в точке А, если S1A= S2A? Фольга Ф расположенаперпендикулярнолазерномупучку.

    середина красной полосы середина темной полосы переход от темной к красной полосе нельзя дать однозначный ответ

    Слайд 20

    (ЕГЭ 2002 г., Демо) А33. На рисунке дан ход лучей, полученный при исследовании прохождения луча через плоскопараллельную пластину. Показатель преломления материала пластины на основе этих данных равен

    0,67 1,33 1,5 2,0

    Слайд 21

    2002 г. А21 (КИМ). Разложение белого света в спектр при прохождении через призму обусловлено

    1)преломлением света 2)отражением света 3)поляризацией света 4)дисперсией света

    Слайд 22

    (ЕГЭ 2003 г., КИМ) А21. Объектив фотоаппарата является собирающей линзой. При фотографировании предмета он дает на пленке изображение

    действительное прямое мнимое прямое действительное перевернутое мнимое перевернутое

    Слайд 23

    (ЕГЭ 2003 г. демо) А29. Линзу, изготовленную из двух тонких сферических стекол одинакового радиуса, между которыми находится воздух (воздушная линза), опустили в воду (см. рис.). Как действует эта линза?

    (ЕГЭ 2008 г., ДЕМО) А24. Синус предельного угла полного внутреннего отражения на границе стекло – воздух равен 8/13. Какова скорость света в стекле?

    4,88·108 м/с 2,35·108 м/с 1,85·108 м/с 3,82·108 м/с

    Слайд 27

    Используемая литература

    Берков, А.В. и др. Самое полное издание типовых вариантов реальных заданий ЕГЭ 2010, Физика [Текст]: учебное пособие для выпускников. ср. учеб. заведений / А.В. Берков, В.А. Грибов. – ООО "Издательство Астрель", 2009. – 160 с. Геометрическая оптика. Образовательный сайт /http://geomoptics.narod.ru/Index.htm Дисперсия света. Словари и энциклопедии на Академике / http://dic.academic.ru/dic.nsf/ruwiki/15536 Касьянов, В.А. Физика, 11 класс [Текст]: учебник для общеобразовательных школ / В.А. Касьянов. – ООО "Дрофа", 2004. – 116 с. КЛАСС!ная физика для любознательных. ПЛОСКОЕ ЗЕРКАЛО / http://class-fizika.narod.ru/8_38serk.htm Мякишев, Г.Я. и др. Физика. 11 класс [Текст]: учебник для общеобразовательных школ / учебник для общеобразовательных школ Г.Я. Мякишев, Б.Б. Буховцев. –" Просвещение ", 2009. – 166 с. Открытая физика [текст, рисунки]/ http://www.physics.ru Подготовка к ЕГЭ /http://egephizika Пособие по физике «Геометрическая оптика» / http://optika8.narod.ru/7.Ploskoe_zerkalo.htm Просветление оптики. Материал из Википедии - свободной энциклопедии / http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D0%B2%D0%B5%D1%82%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BE%D0%BF%D1%82%D0%B8%D0%BA%D0%B8 Федеральный институт педагогических измерений. Контрольные измерительные материалы (КИМ) Физика //[Электронный ресурс]// http://fipi.ru/view/sections/92/docs/

    Посмотреть все слайды